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ABSTRACT

This report presents a simple and rapid method for predicting the

nonlinear response and stiffener separation of postbuckled, flat,

composite, shear panels. The method uses modular, "strength-of-
materials-type" models. The disbonding failure is hypothesized as being
due to a stress concentration in the surface layer of the skin immediately

under the toe of the attached flange. The highly local character of this
stress, which renders a finite element analysis impractical, enables a

simple analysis to be developed. The maximum principal tensile stress in

the skin surface layer under the toe is determined, and failure is said to
occur when this stress reaches the mean transverse tensile strength of

the layer.

The analysis consists of a number of closed-form equations that
have been programmed into a preliminary design code called SNAPPS

[_S.peedy _Nonlinear Analysis of Postbuckted Panels in Shear], which rapidly

predicts the panel's postbuckling response and failure load. SNAPPS was
applied to three test panels with widely different geometries, laminates
and stiffnesses. At the test failure loads, the predictions of maximum

principal tensile stress at the toe vary from 8% below to 20% above the

transverse tensile strength. The predicted failure loads range from 18%
below to 25% above the test failure loads.

Using the B-basis allowable stress, which is 62% of the mean

transverse tensile strength, the predicted allowable load for each panel
was consistently found to be about half the test failure load. In view of

the scatter experienced in matrix-dominated modes of failure in
composite materials, these are reasonable, but not excessively

conservative predictions.

A new method was developed for determining experimental buckling
loads for shear panels. The method uses the "diagonal tension factor", k,

for which a closed-form expression was derived. An unambiguous
estimate of the initial buckling load can be obtained by plotting k against

load, and extrapolating back to the load at which k is zero.

The report also gives design recommendations for reducing the

maximum principal tensile stress at the toe, thereby increasing the
panel's load carrying capacity. Results from an approximate but accurate

parametric analysis imply this is best accomplished by decreasing the
skin thickness, increasing the flange width, and by decreasing the bending

stiffness of the combined stack of the skin and attached flange.
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SECTION 1

INTRODUCTION

There is a need for a simple, rapid prediction of stiffener separation

in postbuckled, flat, composite shear panels in which the stiffeners are
bonded to the skin. Analysis and test evidence point to the failure being

caused by a highly localized stress in the skin immediately under the toe
of the attached flange of the stiffener. To locate and quantify this stress,
a finite element model would have to be exquisitely detailed and may not

be practical in real terms, particularly if it has to be re-done at each

design change. Fortunately, the extreme localization of the stress enables
the development of a simplified method of analysis.

1.1 Methodology

The analysis described in this report began with the premise that

the physical behavior of a highly buckled, stiffened shear panel could be

described by simple equations culled from standard texts. The challenge
was to get a physical understanding of the panel behavior as it progressed

into the postbuckled regime. Two key aids to this understanding came
with a series of panels tested by Grumman [Visconti, 1988], followed by a
detailed finite element analysis [Sobel and Sharp, 1994] of one test panel,

denoted as C1. That analysis used the STAGS code [Almroth, et al., 1982]

to perform a buckling analysis and then a nonlinear analysis up to the test
failure load of fifteen times initial buckling.

The analysis developed here consists of a number of closed-form

equations that can easily be used in a "hand analysis". For expediency,
they have been programmed using the True Basic language into a code
called SNAPPS [Speedy Nonlinear Analysis of Postbuckled Panels in Shear],

which rapidly predicts the postbuckling response and failure load of the

panel. The model used is similar to that of Tsai [1983], where strips of
the skin and stiffener parallel to the diagonal tension field are idealized

as beams and tie-rods. We depart from Tsai's analysis in the derivation

of the out-of-plane displacement, in the idealization of the combined skin

and flange, and in the failure criterion. For the latter, we compute a
highly localized stress in the skin immediately under the toe of the flange
and relate it to the transverse tensile strength of the skin ply, while Tsai

uses an overall pull-off load which is geometry-dependent and has to be

determined empirically for each configuration.
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• Development Ph_eF

The development of SNAPPS can be divided into three phases:

The first phase drew heavily on the methods of Kuhn [1952], Wagner

(described in Kuhn [1952]), and Ranalli and Bunce [1977], for the analysis
of stiffened aluminum panels in which the stiffeners were riveted to the

panel. Ranalli and Bunce's analysis focused on overall pull-off loads
between the skin and flange. This concept was carried over to a test

program for stiffened composite panels, test coupons, and elements, as

described by Visconti [1988]. Their analysis, when modified to include the

twisting moment between the skin and flange in addition to the pull-off
load [Sharp and Sobel, 1989] gave satisfactory agreement with test
failure loads, but required element tests specific to the test panel, and
these showed adhesive failures. In contrast, the panel tests revealed

intra-ply failures of the skin immediately under the toe of the flange, as

evidenced by the pull-out of fibers from the surface layer of the skin.
This observation led to the realization that the flatwise tensile strength
in the laminate was the key to the failure.

The second phase began with an analysis of the through-the-

thickness tensile stress in the skin immediately under the toe (Sharp

[1989] and Sobel [1990]). The model used was developed during Grumman's

CTSA program [Cacho-Negrete, 1978], and consists of two beams, one
representing the skin and the other the attached flange, joined by an
elastic foundation. The analysis revealed peel stress concentrations

under the heel and toe of the flange. These stresses die away within short

distances, and do not significantly interact with each other, enabling a

great simplification in the equations. In this second phase, the stress
state in the postbuckled skin was assumed to be given by Kuhn's empirical

theory of incomplete diagonal tension, and the width of the buckle was
determined empirically from moire" fringe patterns.

The third phase took account of the immense amount of data
available from the STAGS analysis of panel C1, Sobel [1990], together

with a more detailed interpretation of strain gauge readings and moire"

fringe patterns for the three test panels. From these, it was found that a

reasonably accurate estimate of the stress resultants in the flat panel
after buckling could be obtained by assuming (1) a diagonal tension angle

of 45 ° and, (2) that the compressive stress resultant reaches a value equal

to the buckling shear flow and does not increase further. The buckle width
could now be determined analytically by isolating one buckle and imposing

equilibrium on the out-of-plane components of the membrane stress
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resultants.
removed.

All of the empiricism in the earlier analysis was thereby

• Failure Criterion

It is hypothesized that the failure is located in the skin layers

immediately under the toe of the flange, and is caused by the maximum

principal tensile stress in the layers (Sharp [1989] and Sobel [1990]).
This stress is a combination of three stresses, all of which peak at the

toe, in the outermost skin layer on the stiffener side of the panel whose

fibers are normal to the diagonal tension fold. They are (1) an extremely

localized peel stress, (2) an interlaminar shear stress, and (3) an inplane
tensile stress in the direction of the diagonal tension fold. The
combination of these three stresses makes the toe location critical: at the

heel, the peel stress is higher, but the combination of the three stresses

gives a lower principal stress there. The failure criterion adopted here
equates the maximum principal tensile stress based on these three

components to the transverse tensile strength of the skin layers.

• Assessment of Method

An assessment of the accuracy of the simplified method is achieved

by applying the SNAPPS code, described in Appendix M, to the three panels
manufactured and tested by Grumman [Visconti, 1988]. The predictions
are compared to those of a nonlinear STAGS finite element analysis [Sobel

& Sharp, 1994], and to strain gauge and moire" fringe readings taken during
the tests. SNAPPS predictions for the out-of-plane displacement,

wavelengths, and skin stress resultants were found to agree well with
both test measurements and STAGS results. While the intensely localized

state of stress at the toe cannot be directly compared to the STAGS

results, nor can it be determined from the test .results, relating its

predicted maximum principal tensile value to the transverse tensile

strength of the skin layers provides estimations of the panel strength that
are in reasonably good agreement with the test failure loads.

1.2 Structure of Re Dort

This report consists of a number of sections and appendices, with
details of the derivations of the governing equations used in SNAPPS being

relegated to the appendices. The governing equations and computational
procedure are summarized in Section 2, and coded in appendix M. Section 3

compares SNAPPS predictions for the three test panels with test

1-3



measurements and STAGS results, and Section 4 gives conclusions,
lessons learned and recommendations.

The key elements of SNAPPSinvolve calculation of the following:

• The stress resultant state in the postbuckled skin (Appendix C),

• The buckle width and length (Appendix D),

• The maximum out-of-plane displacement (Appendix E),

• The "tie-rod" analysis of a strip of skin (Appendix F),

The skin bending moment at the toe of the flange from
compatibility of rotation between the tie-rod model and the

combined skin and flange model at the toe of the flange
(Appendix G),

• The maximum shear stress at the toe (Appendix H),

The tensile peel stress between the skin and the toe of the flange,

based on a simplified "coupled beams on an elastic foundation"
analysis (Appendix I),

The inplane transverse tensile stress in the critical ply, which is

the outermost skin ply whose fibers are normal to the diagonal
tension fold (Appendix K),

The combining of the peel stress, the maximum shear stress and
the transverse tensile stress under the toe to obtain the maximum

principal tensile stress in the surface layer of the skin

(Appendix L),

Failure, which is identified as value of the applied shear flow at

which the maximum principal tensile stress reaches the
transverse tensile strength of the critical ply (Appendix L).
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SECTION 2

DESCRIPTION OF ANALYSIS & COMPUTATIONAL PROCEDURE

2.1 Description of Analysis

The analysis described here is based on four major insights gained
from the test results and the STAGS analysis:

(1) That the angle of the diagonal tension fold remained almost

constant at between 45 ° and 48 o to the normal to the stiffener.

(2) That the stress resultants in the skin after buckling could be
simply described in the terms of the applied shear flow and the

buckling shear flow without recourse to empiricism.

(3) That the buckles grew steadily in the skin as the load increased
above buckling by narrowing the width of the buckle. This

observation identified the aspect ratio and maximum out-of-plane

displacement of the buckle as key parameters in the analysis.

(4) That the failure was localized under the toe of the attached

flange of the stiffener, enabling a simplification of the CTSA

[Cacho-Negrete 1978] analysis to be used to calculate the tensile
peel stress in the skin under the toe.

Based on these insights, a simplified computational procedure was
developed that uses strength-of-materials-type models. The first step in

the procedure is to calculate the buckle width and length as a function of
the applied shear flow. Next, the maximum out-of-plane displacement is

computed. From this, the bending moment and transverse shear force in the
skin immediately under the toe of the stiffener flange are determined. With
these internal Joads at the toe region, the anaJysis proceeds to the

calculation of three stresses, "_xz, Cz and ax, all of which peak at the
surface of the skin under the toe of the flange. They are defined in the xz

plane, where x is in the direction of the diagonal tension fold and z is
normal to the original plane of the skin. The shear stress, _;xz, arises from

the transfer of part of the diagonal tension load from the skin into the

flange, Cz is a tensile peel stress acting normal to the skin between the
skin and the flange, and (_x is a tensile stress in the outermost ply on the
stiffener side of the panel whose fibers are normal to the direction of the

diagonal tension fold. (_x is induced by the membrane load and bending

moment in the skin immediately under the toe. Combining these stresses
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enables calculation of the maximum principal tensile stress in the critical
ply. Comparing this to the transverse failure stress of the ply allows a
prediction of failure to be made.

2.2 Governina Equations & Computational Procedure

In what follows, only the main equations are given. Detailed

derivations of the equations are in the referenced appendices, and a flow
chart of the various steps in the analysis procedure is given in Figure 1.

Note that the input to SNAPPS requires the membrane and bending
stiffnesses of the skin, flange and the combined skin and flange (where they
are bonded together to form a single stack). These have to be obtained from

the layer properties and stacking sequences, using an independent computer
code. We used MACLAMINATE [Flanagan, 1991], but any similar capability
will serve.

• _kin _treFF Resultants

Next, the principal stress resultants in the buckled skin, except under

the toe of the flange, are determined from Appendix C as follows:

N1 = 2q-qcr Eq. (7) of Appendix C

N2 = qcr Eq. (5) of Appendix C

where N1 and N2 are principal tensile stress resultants parallel and normal,

respectively to the direction of the diagonal tension folds. N1 is positive

when it is in tension and N2 is positive when it is in compression. In these

equations, q is the applied shear flow, and qcr is the shear flow at which

the skin buckles (q and qcr are always positive in this report). The buckling

shear flow qcr may be estimated from standard procedures for orthotropic

plates, such as the Grumman Advanced Composites Structures Manual

(which is based on Seydel [1933]) or Housner and Stein [1975]. If available,
the test buckling load or a STAGS (or similar) prediction can be used.

• Buckle Kinematics

]'he iength, L, of the diagonal tension foid, measured along the f01d
between the toes of the attached flanges of the stiffeners, see Figure 1 of

Appendix D, is given by

L = btt/coso_
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where

and

btt -- the toe-to-toe distance between the attached flanges of the

stiffeners, measured normal to the stiffener direction.

(x = the angle between the diagonal tension fold and the normal to the
stiffener direction. It is assumed that (x is constant at 45 °.

from

The width of the buckle, c in Figure 1 of Appendix D, is calculated

c= L. N2
Eq. (7) of Appendix D

The projected length of the buckle along the stiffener axis, Lb, is then

Lb = C
COS

Eq. (8) of Appendix D

• M_ximpm Out-of-Plane Displacement

The amplitude

obtained from

of the out-of-plane displacement, 5max, is next

_max = 2"v/Lc Iq-qcr/_--_-_--/
Eq. (6) of Appendix E

where Gt is the in-plane shear stiffness of the skin, referred to axes

parallel and normal to the stiffener direction.

• Loads in the Skin at the Toe of the Attached Flanoe

The analysis now obtains the bending moment, Mtoe, and the transverse

shear, Wtoe, in the skin immediately under the toe of the flange. To do this,

a "tie-rod" model of the skin is connected to a beam model representing the

combined flange and skin between the stiffener centerline and the toe of

the flange. This is done by invoking rotational compatibility at the common
ends of the models. Both models are of unit width and lie along the diagonal
tension fold.

The "tie-rod" model of the skin is described in Appendix F. The beam

model of the combined skin and flange, which contains the total stacking

sequence of the flange, a layer of adhesive and the skin, is described in
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Appendix G. It is assumed to be cantilevered at the stiffener centerline,
and loaded at it's tip by Wtoe and a moment given by (Mtoe - NltoeZ) The

second term, NltoeZ, represents the moment due to the membrane load in the

unbuckled skin at the toe being offset from the neutral axis of the combined
section by an amount, z, (see Figure 1 of appendix G) and is calculated from

and

where

Nltoe = q Eq. (10) of Appendix C

Z

Etflts+ta +-_}+Etsr_-2 ts

Etfr + Etsr 2
Eq. (6) of Appendix G

ts = thickness of the skin

tf = thickness of the flange

ta = thickness of the adhesive layer between the skin and flange

Etsr ,, membrane stiffness of the skin

Etfr = membrane stiffness of the flange.

Etsr and Etfr are measured in the direction of the diagonal tension fold (as

denoted by the subscript r).

Mtoe is given by

Mtoe --

 ,m x(1L rN1) L,r0Z
L 2 Dtotr Dtotr

(;L- _/L Lfr " L2r /Dtotr 2 L D--_totr/

Eq. (10) of Appendix G

and Wtoe by

where

and

Wtoe = _-(N1 (3max + Mtoe)

Dsr

Eq. (15) of Appendix G

Lfr = Lf/coso_, where Lf -- the width of the attached flange of the

stiffener, measured normal to the stiffener direction

Dsr = the bending stiffness of the skin about the inplane normal to the

diagonal tension fold
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Dtotr = the bending stiffness of the combined skin and flange (where

they are bonded together to form a single stack). Dtotr is

measured about the inplane normal to diagonal tension fold.

• Calculation of Stresses in the Skin at the Toe

The analysis now proceeds to the calculation of the three stresses

which combine to give the maximum principal tensile stress at the surface
of the skin under the toe. The stresses are defined in the xz plane, where x

is in the direction of the diagonal tension fold and z is normal to the

original plane of the skin, and are as follows:

The shear stress "Cxzat the interface between the skin and the flange
is calculated first. It arises from the transfer of part of the membrane

load from the skin into the flange and peaks in the surface ply under the toe.

From Appendix H, the maximum shear stress, which occurs under the toe, is

given by

"l;xz = Nltoe K Etfr
Etfr + Etsr

where

and

= 1 + /_J__ It1 t t
_)xz _____(___.13),lange+ (G)adhesive _G, 3)face + 2--{G)core

Eq. (5) of Appendix H

Eq. (4) of Appendix H

Eq. (2) of Appendix J

In the equation for (l)xz, G denotes the shear modulus for the isotropic
adhesive and core materials. For the tape layers, it is simplest to use G13

for all layers regardless of orientation, while for fabric layers G13 = G12.

The peel stress Cz is a tensile stress acting normal to the skin face
between the skin and the flange. This stress has peaks at the toe and heel

of the flange, but we are concerned only with the peak at the toe in this

analysis. As described in Appendix I, (_z can be conveniently subdivided into

two parts: the first, Czl, is due directly to the moment Mtoe and the
transverse shear Wtoe applied from the skin; and the second, Gz2, is caused

by the shear along the interface between the skin and flange acting at half
the laminate thickness away from the midplane of each laminate. The two

parts of the peel stress are given by
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O'z. = O'zl + (_z2

where

2 p (Wtoe + _ Mtoe)
O'zl = (1 + Dsr/Dfr)

Eq. (21) of Appendix I

and

_z2 = Cn tf _z (F1 * F2) Eq. (22) of Appendix I

where

_=(--_Dsr+ Dfr/1/4Dsr Dfr ]

Cn = Nltoe K2 Etfr
2 _z Etfr + Etsr

( K')F1 = 1- K2 + Dfr 1
213 2133

F2 2 J3 Dfr (Dsr/Dfr - t_/tf /= K Dfr + Dsr !

m _ 0z(OsrK' 0zll+ts/t,t)
Dsr Dfr K4 K4 + 4 134

and

= 1
It t + It

(_z ____(_33)flange+ (E)adhesive (_33)face + 2--(E)core

Eq. (1) of Appendix J

In these equations, Dfr is the bending stiffness of the flange,

measured about the normal to diagonal tension fold, t denotes laminate
thickness, E is Young's modulus for the isotropic adhesive and core

materials, and E3 is the out-of-plane modulus for the flange and skin layers

(by assuming transverse isotropy for tape layers, we may take E3 = E2,

where E2 is the layer transverse modulus

The ten_;ile stress (_x in the skin face is induced by the membrane

stress resultant and bending moment in the skin immediately under the toe
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of the flange. It acts in the direction of the diagonal tension fold, in the
"critical ply". The critical ply is defined by the following criteria: it has
to be on the stiffener side of the skin; it has to be put into tension, along
the diagonal tension fold, by the transverse shear Wtoe and the moment Mtoe

and; it's fibers are normal to the diagonal tension fold, i.e. (_x acts normal
to the fibers, and in the plane of, the critical ply. To be conservative, by

using the highest possible value of (_x, the critical ply is assumed to be at

the surface of the skin. The force and bending moment are analyzed in
Appendix G. The derivation of ax is given in Appendix K, and results in the
following equation for Cx:

where

and

I _E2 {(1-Vl 2) (l+vsr) _--q + ts Mtoe' Eq. (7) of Appendix KO'x = t1-V12V21 ! Etsr 2 Dsr

Vsr = the Poisson's ratio of the skin in the xy axis system (Vsr=Vxy

is defined according to Vxy Ey = Vy x Ex, where Ex and Ey are the

engineering constants for the skin laminate),

El, E2, and V 1 2 are the in-plane Young's moduli and Poisson's ratio

for the face ply of the skin. (The subscript 1, when affixed to a

material property, pertains to the fiber direction, and v 1 2 is defined

according to v21 E1 = v12 E2).

• Maximum Principal Tensile Stress

The three stress components "Cxz, az and Ox are combined to give the
following expression for the maximum principal tensile stress in the

surface ply immediately under the toe:

Eq. (1) of Appendix L

• Failure Criterion

Examination of photomicrographs of ply cross sections shows that for

graphite/epoxy the placing of the fibers within such a section is random,

and it is impossible to discern the orientation of the photographed section
within the ply without other, external, clues. We may therefore assume

transverse isotropy, and that the tensile strength at any orientation in the

xz plane is equal to the transverse tensile strength F_2u of the layer.
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Failure is assumed to occur when the maximum principal tensile
stress in the skin immediately under the toe reaches the transverse tensile
strength of the layer, i.e., when

Gmp t = F_u Eq. (2) of Appendix L

Failure of this layer constitutes failure of the joint, because cracking of

the matrix allows fibers to be pulled out of the skin surface. This type of
failure was observed on all of the panels tested.

The following values used in the analysis of the test panels are based
on statistical analysis of 19 coupon test results for transverse tension of

IM6/3501-6 graphite/epoxy tape, in the room temperature, ambient,
moisture ("dry") condition [Shyprykevich, 1988]:

Ft2u = Mean strength = 7150 psi

Standard Deviation = 1180 psi

"B-basis" allowable stress = 4460 psi

where the B-basis allowable strength is such that at least 90% of the
transverse tensile strengths are expected to exceed the B-basis allowable

value, with a confidence of 95%.
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SNAPPS INPUT • (Appendix M)
Specify Geometry, Material Properties, Stiffness, qcr

Specify the Applied Shear Flow, q, and Compute the Following:

Stress Resultants N1, N z (Appendix C)

Wavewidth, c and Wavelength, Lb (Appendix D)

{3"1

"61 Maximum Out-Of-Plane Displacement, 5rnax (Appendix E)

Skin Bending Moment at Toe of Flange, Mtoe and Transverse Shear Force

at Toe, Wto e (Appendix G)
9P I

I
Z I

I
I Foundation Moduli, _Pz,(_xz (Appendix J)

Components At Toe

tj I

i Q.I

I Stress
Interlaminar Shear Stress

J 1;xz

I (Appendix H)

Peel Stress

(_z

(Appendix I)

_t Maximum Principal Tension Stress at toe,

Tensile Stress in Critical

Ply, in DT Direction, (_x

(Appendix K)

O'rnpt (Appendix L)

FIGURE 1 COMPUTATIONAL PROCEDURE
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SECTION 3

RESULTS AND ASSESSMENT OF METHODOLOGY

The computational procedure described in Section 2 has been

programmed, using the True Basic language, into a code called SNAPPS,

(Appendix M), which has been applied to three, flat, stiffened, composite

panels (A1, B1 and C1)tested at Grumman, as described in Appendix A.
The current section presents results pertaining to the SNAPPS

methodology, and assesses the accuracy of the SNAPPS predictions by

comparing them to the panel test results and STAGS predictions for panel

C1 [Sobel and Sharp, 1994].

3.1 Assessment of Basic Premises

The SNAPPS analysis is built around two basic premises: that the

angle of diagonal tension, o_, is 45 ° (for flat panels), and that the

compressive stress resultant normal to the diagonal tension fold reaches
a value equal to the buckling shear flow, qcr, but does not increase beyond

that value as the panel is loaded into the postbuckling regime. The first

assumption implies that the principal stress tensile and compressive
resultants, N1, and N2, line up with the diagonal tension folds at all load

levels, with N1 acting in the direction of the fold and N2 normal to it, and

the second assumption stems from the use of Wagner's model of the

buckled panel, see Kuhn [1952]. Inplane equilibrium then dictates the
value of N1, which is derived in Appendix C, The validity of these

assumptions is assessed by comparing SNAPPS values for (z, N1 and N2

with test and STAGS results for the three panels. This is done in Figures

1 through 4, with the caption of Figure 1 defining the location of the
strain gauges, and how the gauge measurements at these locations were

averaged to obtain the test values of (z, N1 and N2. (The values of the test

failure loads and qcr appearing in the abscissas in the figures are given in

Appendix A).

Figure 1 compares the (z = 45 ° assumption with measured and STAGS

results. The measured and predicted values of o_ all lie between 45 ° and

48 ° degrees from the normal to the stiffener, thereby justifying this

assumption.

Figures 2, 3 and 4 plot the principal stress resultants for the three

panels against q/qcr. Test results are given together with predictions
based on the SNAPPS model and STAGS (for C1 only). Also included are
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results from Kuhn's [1952] model based on an empirical expression for the
diagonal tension factor, k, obtained from tests on aluminum panels. The
figures reveal that the simplified SNAPPS approach gives stress
resultants that are in reasonable agreement with the measured and STAGS
results.

From Figures 1 through 4 it is concluded that the basic premises
used in the SNAPPS analysis correlate well with the test and STAGS

results. SNAPPS results stemming from these basic premises are

compared next with test and STAGS for both global (kinematic) and local
(stress) response variables.

3.2 Assessment of Global Predictions (Kinematic Variables1

SNAPPS computes the buckle (half) wavelength projected along the

stiffener direction, Lb, (Appendix D) and the maximum out-of-plane

displacement, (Smax (Appendix E). Normalized values of these kinematic
variables are compared next with test and STAGS results to provide a

"global" check on the SNAPPS methodology.

Figure 5 gives the variation of Lb with the dimensionless load level

q/qcr. Lb, is normalized with respect to the toe-to-toe distance, btt,
measured normal to the stiffener direction. This distance is shown in

Figure 1 of Appendix D, and the SNAPPS expression for Lb/ btt is given by

Eq. (10) of that appendix. Included in the figure are wavelengths measured
from moire" photographs taken during the loading to failure for panels A1
and C1, and wavelengths predicted by the STAGS analysis for C1, and

Timoshenko's [1961] "end point (q/qcr--1)" buckling solution through

which the SNAPPS prediction was forced to pass (see Appendix D). The
figure demonstrates that the simple SNAPPS model used to determine the

wavelength gives results that agree quite well with the measured and
STAGS results.

Figure 6 shows the variation with q/qcr of 5max, which is normalized

with respect to L_-'Ycr, where L is the toe-to-toe distance between

flanges, measured along the length of the diagonal tension fold (see Figure

1 of Appendix E), and "_cr is the critical shear strain corresponding to qcr.

The SNAPPS expression for L 71f'?_-cris given by Eq. (8) of Appendix E. The

test results in the figure are based on moire" fringe patterns photographed
at various load levels during the tests of panels A1 and C1 (panel B1 was
the earliest tested and was not instrumented for moire" fringe

measurements). The test set-up for the Shadow Moire' Method of obtaining

out-of-plane displacements in the buckled panel is described in Visconti
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[1988]. The SNAPPS predictions based on the simple model of Appendix E
somewhat overpredict (_max, but this discrepancy is judged acceptable
within the framework of a simplified, preliminary design, analysis tool.

Taken together, Figures 1 through 6 engender a sense of confidence
that the basic premises underlying the SNAPPS procedure are physically
realistic, and are valid even at postbuckling load levels of fifteen times

initial buckling (which corresponds to the failure load level for panel C1).

3.3 Assessment of Local Predictions (Stress Variables)

The final check involves using SNAPPS to predict the maximum

principal tensile stress, _mpt, immediately under the toe of the flange,
and comparing this stress to the transverse tensile failure stress of the
skin ply. This stress is highly localized and cannot be verified, either by
the tests or STAGS results. However, if we get reasonable predictions for

the failure loads for the three panels, then we may reasonably conclude
that the methodology is valid, at least within the range of parameters for

the tested panels, for the purpose of providing a preliminary design tool.

The comparisons are made in two ways, the results of which are
summarized in Tables 1 and 2.

Corresponding to the test failure load for each of the three tested

panels, Table 1 compares _mpt with the mean transverse tensile strength,

Ft2u, which is taken as the failure criterion, as described Section 2 and

Appendix L. For the IM6/3501-6 Graphite/Epoxy material in the room

temperature, ambient moisture content condition, Ft2u = 7150 psi (see

Appendix L). Table 1 shows that (_mptdiffers from the mean strength by an

average of 12.9%. It can be shown that the calculated values of _mpt are

approximately within one standard deviation from the mean value of Ft2u.

The SNAPPS code can also be used to predict the failure shear flow.

To do this, the code is run with a succession of values of the applied shear

flow until the predicted maximum principal tensile stress at the toe
reaches the mean strength of 7150 psi. The results so obtained are

displayed in Table 2, from which it is seen that the predicted failures
differ from the test failures by an average of 18.3% (based on absolute

differences, using algebraic differences gives -2%). This is a higher

percent difference than the 12.9% obtained in the previous table, because

(_mpt varies nonlinearly with q.
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Table 2 also gives SNAPPS predictions of the allowable load for each
panel based on the "B-basis" allowable of 4460 psi, (which is 62% of the
mean failure stress of 7150 psi, see Appendix L). It is observed that the
predicted allowable loads for the three panels are consistently about half
the test failure load. These predicted allowable loads are reasonably but
not excessively conservative, in light of the nonlinear nature of the
problem, and the variability in the matrix-dominated strength.

Tables 1 and 2 give SNAPPS results for (_mpt for two load levels, one
corresponding to the test failure load for each panel, and the other

corresponding to the load level at which SNAPPS predicts failure to occur.

The $NAPPS predictions for (_mpt for a range of load levels, are displayed
in Figures 7 to 9 for the three panels, which also serve to summarize the

foregoing results of Tables 1 and 2. The SNAPPS predictions for the
maximum principal tensile stress under the toe are seen to vary

nonlinearly with load, thereby demonstrating that the simple models used
in SNAPPS capture the basic geometric nonlinear behavior of the

postbuckled shear panels.
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TABLE 1 SNAPPS PREDICTIONS FOR THE MAXIMUM PRINCIPAL

TENSILE STRESS AT THE TEST FAILURE LOAD FOR EACH OF THE

THREE TESTED PANELS.

Panel

A1

B1
Cl

Predicted Max Prin

Stress at toe, psi
8597

7893
6580

Avg % Diff of Absolute

Values of Gmpt Relative to

Mean Strength

% Diff Relative to Mean

Strength (7150 psi)
20.2

10.4
-8.0

12.9

TABLE 2 SNAPPS FAILURE AND ALLOWABLE LOAD PREDICTIONS

FOR EACH OF THE THREE TESTED PANELS.

Panel

A1

B1
Cl

Test Failure

Load, ppi

1403
838

962

Predicted
Failure

Load, ppi

1149

735
1199

Avg % Diff of
Absolute
Values of

Predicted
Failure Load

w.r.t to Test
Failure Load

% Diff of

Predicted

Load w.r.t
Test

Failure
Load

-18.1
-12.3

24.6

18.3

Allowable
Shear

Flow (B-

basis),

ppi

791

451
468

Ratio of

Allowable
Load to Tesl

Failure Load

.56

.54

.49
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SECTION 4

CLOSING REMARKS

4.1 Summery and Conclusions

We have attempted, using a simple "strength-of-materials"

approach, to develop a preliminary design tool for rapidly analyzing the
very complex nonlinear problem of the postbuckling behavior and failure of

flat, stiffened, composite shear panels.

The analysis is based on the premise that the physical behavior of a

highly buckled, stiffened shear panel can be described by simple, closed-

form, equations using the insights gained from a series of panels tested
by Grumman, and the subsequent correlation of the test results with
STAGS nonlinear finite element results for one of the panels.

The analysis method has been programmed, using the "True Basic"

language, into a code called SNAPPS ("._zpeedy _Nonlinear Analysis of

Postbuckled Panels in Shear"), which is a simple and fast preliminary
desia n tool for predicting failure and postbuckling behavior of composite

shear panels with bonded stiffeners. The code is written in a modular
form so that it may be easily modified by the user if new test data or

physical insight makes modification desirable. Each module of the code is
the subject of an Appendix in this report.

Confirmation of the validity of the basic premises of the method has

been gained by comparing its predictions with test results for the three

panels, A1, B1, and C1, and with the nonlinear finite element analysis
results obtained from STAGS for panel C1 only. We are encouraged that

the SNAPPS predictions for the skin's diagonal tension stress resultants

and out-of-plane deflections (i.e., the large-scale behavior of the panel)

agree well with test results for these panels of widely different

geometries and stiffnesses, and with the STAGS predictions.

However, the failure criterion adopted - that failure occurs when
the maximum principal tensile stress in the skin under the toe of the

stiffener flange exceeds the transverse tensile strength of the surface

plies - cannot be confirmed, either by test measurements or by finite
element analysis. Indirectly, it is judged by comparing the test failure

loads of the A1, B1 and C1 panels with SNAPPS predictions based on the
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mean strength of 19 transverse tensile test coupons. The predictions of
failure for the two-stiffener panels, A1 and B1, are 18% and 12% below
the test failures respectively, i.e. on the conservative side. For panel C1,
the predicted failure load is about 25% above the test failure load, i.e.,
unconservative. The mean (algebraic) error is 2°/,,. We contend that the
failure criterion is physically realistic, and that the failure mode is
correctly identified, and feel this conclusion is confirmed by Minquet and
O'Brien [1996] in their analysis of stiffener pull-off specimens. It is
worthy of note that their analysis of the maximum principal tensile
stress at failure for four different specimens gave values ranging from
6600 psi to 7300 psi for the same IM6/3501-6 graphite/epoxy material
used in our tested panels and for which we used an average transverse
tensile strength of 7150 psi. Never the less, we must admit that our data
base is too small for comfort because of the large amount of scatter,
although this is typical of matrix dominated failures.

The B-basis allowable transverse tensile strength is 4460 psi,
much lower than the mean value of 7150 psi (allowable -- 62% of mean),

reflecting the wide scatter of a matrix-dominated failure in

graphite/epoxy, which is made worse by the small sample size. The

prediction of allowable shear flows for all three panels is consistent, at
56%, 54% and 49% of the test failure loads for A1, B1 and C1 respectively.
We feel that these are reasonably, but not excessively, conservative in
view of the matrix-dominated nature of the failure, and the small data
base.

SNAPPS requires much more work for its complete validation. Its

predictions need to be compared with test results for other panels. A
larger, statistically significant, data base of transverse tensile strengths

needs to be acquired, and applied to a wider range of test panels.
Meanwhile, SNAPPS should be useful in performing trade studies, with the

understanding that any design obtained from the trade-studies should be
verified by test and/or a detailed analysis.

4.2 Limitations

The method was developed for flat, stiffened, composite panels

loaded in shear only. The skin is assumed to be a balanced and symmetric
laminate.

There must be a sufficient number of stiffeners so that the aspect

ratio of a skin-bay between the toes of the stiffener flanges is large

enough to allow a number of buckles to develop, ensuring that end effects
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do not dominate the buckle pattern, and that the out-of-plane deformation
of the diagonal tension fold is symmetric about the midlength of the fold,
as is assumed in the SNAPPS analysis (the STAGS results for panel C1
show that such symmetry is not the case for this single stiffener panel m
see Figure 2 of Appendix G).

The stiffeners are assumed to have sufficient bending stiffness to
prevent the diagonal tension folds from progressing across the stiffener
centerlines. The user is alerted that the analysis assumes zero rotation
of the skin at the stiffener centerline in the diagonal tension direction
(see Figure 1 of Appendix G). This is correct for stiffeners made up of
back-to-back channels or angles, and may reasonably apply to sturdy
"hat"-sections. The applicability of the code to unsymmetric sections
such as single angles or Z-section stiffeners has not been verified, nor
has it been applied to non-sandwich composite skins, or metallic panels
with bonded-on stiffeners.

The Wagner model [see Kuhn 1952] for the principal stress
resultants in the diagonal tension folds has been used in this analysis
because it gave good agreement with the measured and STAGS skin stress
resultants, and it enabled the removal of undesirable empiricism from the
analysis. This model should be checked against other test results.

Further, because of the assumption that the principal stress
resultants line up with the diagonal tension folds, and that the angle of
diagonal tension is 45°, the method cannot be applied to curved panels.

It is to be recalled that the allowable and mean transverse tensile
strength values for the graphite/epoxy face ply material for the tested
panel's are based on a limited data base (see Appendix L). Thus, the values
of the SNAPPS predictions for the allowable and failure loads may suffer
accordingly.

4.3 Less0n_ Learned & DeFian Implications

Particular care needs to be taken with sign conventions, stacking

sequence "clocks" on drawings, and load directions with respect to the
structural axes (parallel and normal to stiffeners). Changes in stacking

sequence or load direction relative to the structural axes on the drawing,
resulting from manufacturing errors or changes in load spectrum, may

have significant effects on initial buckling and failure. For thin skins, the
initial buckling load is markedly effected by the sign of the shear load,
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and by orthotropy and/or anisotropy in the skin, as is well illustrated in
Figure 17 of Nemeth [1997].

While the stiffener must be sturdy enough to prevent the
diagonal tension folds from progressing across the stiffener centerlines,
the resistance to stiffener disbonding can be improved by reducing the
moment in the skin immediately under the toe of the flange, thereby
lowering the value of the maximum principal tensile stress. The moment
is lower when the entire attached flange is flexible, but, because the
stress components which make up the maximum principal tensile stress
die away rapidly from the toe, the same effect may be achieved by
tapering the flange locally at the toe, instead of the square edge we
tested. Minquet and O'Brien [1996] have shown that trimming the flange

edge to a 20 ° wedge angle at the toe gives a significant improvement in
the load-carrying capability of the skin-stiffener joint. The taper may

also be achieved by dropping internal plies in the stacking sequence of the

flange, but this may cause problems in tooling because a terminated ply
has to be prevented from moving during the cure cycle and because a resin

pocket is created at it's end.

4.4 Recommendations

To further verify SNAPPS and to suggest possible refinements to it,

SNAPPS should be applied to other test panels, particularly those without
sandwich skins, those with many stiffeners and those tested in different
fixtures.

The models used in the various steps in the computational procedure

are quite simple. Further development should concentrate on refinement
of some of these models, particularly those associated with the transition

region at the nose of the buckle where the diagonal tension field stress
resultants in the buckled panel have to be transformed into a complex set

of internal loads, both inplane and out-of-plane, at the toe of the flange.
The refinement would be based on insights gained from a detailed finite

element modeling of the area around the nose of the buckle where it meets
the toe of the flange, and the model would have to include the shear
deformation of the skin. The model would be bounded by adjacent nodal

lines in the skin and should also include a portion of the attached flange

bounded by the nodal lines, and the toe and heel of the stiffener. From the
results of the model it would be possible to determine the redistribution

of load and moment in the flange and the skin at the nose of the buckle,

and thereby refine the current models used in SNAPPS.
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Although the above model would have to be super-detailed, it is still
unlikely to accurately determine the concentrated stresses in the vicinity
of the toe. In order to quantify the critical through-the-thickness
maximum principal tensile stress in a one inch wide stiffener pull-off
specimen, Minquet and O'Brien [1995 and 1996] used 2273 elements with
13908 degrees of freedom. The size of the element was of the order of
one-third of a ply thickness (i.e. about 0.002 inches) in the critical region.
This was essentially a two-dimensional plane strain analysis where the
location of the critical stress was known. Similar models of equal
complexity were used by Wang, et al. [1994] and Li, et al. [1996]. Imagine,
then, the complexity of the same finely detailed analysis in the present
problem, where the analysis has to be three-dimensional. The critical
stress is in the skin under the toe of the stiffener, but it's location could
be anywhere along the length of the stiffener. Further, because of the
changing wave-pattern in the postbuckled state, the location of the
maximum stress will move with increasing load until, at some point and
some load level, it reaches either the allowable stress for a design
analysis, or the average strength for a failure analysis. Therefore, we
should explore the possibility of using a code such as SUBLAM [Flanagan,
1993] to investigate the stresses at the interface between the skin and
the flange, using loads from the finite element model as boundary
conditions in a global-local approach.

The "diagonal tension factor method" (Appendix B)of obtaining the
initial buckling shear load from experimental results needs additional
verification.

For panel C1, which failed deep in the postbuckling range at a load
about 15 times initial buckling, the predicted moment in the skin at toe,
Mto e, reached a maximum before the test failure load was reached and then

decreased with increasing load (see Figure 3 of Appendix G). Further study
is required to ascertain whether or not this behavior reflects physical

reality or a limitation of the basic SNAPPS methodology.

Finally, it is emphasized that only one failure mode is considered
here, based on the observation that failure originated in the plies of the
face sheet immediately under the toe of the flange for the three tested

panels. Other failure locations and modes need to be investigated, such as
those associated with the sandwich core for which the deformation of the

skin at the nose of the buckle can be extreme at high postbuckling loads.

Such an investigation is beyond the current scope of SNAPPS. However,

the modular approach used in SNAPPS enables the user to estimate the
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transverse shear force and bending moment in the skin at the toe of the
flange, and add more failure criteria to the code.
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APPENDIX A

DESCRIPTION OF TEST PANELS A1, B1, and 01

Comparisons are made throughout this report between SNAPPS

predictions and test results for three shear panels tested by Grumman.
This appendix briefly describes these panels: complete descriptions are

given in the test report [Visconti, 1988], and a STAGS analysis report

[Sobel and Sharp, 1994].

The panels (Figures 1 to 3) were tested in the room temperature
"dry" condition (i.e. stabilized at the ambient moisture condition of the

test laboratory). The test frame was designed to allow the diagonal
tension field to be reacted by the compressive load in the stiffener(s),

rather than in the test frame members. This is accomplished through the

use of a "breather joint", as described below. The skin of each panel
consists of two identical thin composite faces separated by SynCore to

form a sandwich (Figure 2). SynCore is an epoxy resin filled with glass
micro-balloons to reduce its density by approximately one half. The face

material is IM6/3501-6 graphite/epoxy tape. The panels all have the
same overall dimensions, so as to fit into the test frame, but the face

layups and thicknesses differ, as does the thickness of the SynCore.
Panels A1 and B1 have two stiffeners at approximately 11 inches spacing,

but differ in the skin faces, the SynCore thickness and in the stiffener

thickness. Panel C1 had a single stiffener, dividing the skin into two bays

of approximately 17 inches width, and also differs from both A1 and B1 in

its SynCore and stiffener thicknesses. The stiffeners (Figure 2) are built
up from back-to-back channel sections of AS4/3501-6 graphite/epoxy
fabric, with straps of the same layup as the channels. Because the

longitudinal and transverse modulii are almost equal in a fabric, see Table
1, the stiffener web and flanges are, as far as is possible with a wrapped

shape, balanced and symmetric laminates. Warping in the curing process

is thereby minimized. The stiffeners have the same overall dimensions,
being formed on common tools, but are of different layups and thicknesses
for the three panels. The laminate nominal thicknesses and layups are

given in Tables 2 to 4. The stiffeners are cured first and then the "green"
skin is cured and bonded to the stiffeners in one operation ("cocured") on a

flat tool. A single layer of FM300 adhesive is used between the skin and

the flange of the stiffener.

The test frame is 38-in.-square fixture built up from heavy steel

bars pinned at the frame corners. The test load P is applied through two
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of these pins on opposite corners of the test frame, as shown in Figure 1.
Parallel to the stiffener(s), the thickened edges of the panel skin are
sandwiched between the steel bars, and normal to the stiffener(s) the skin
is attached to the steel bars through a breather joint. The breather joint
(Figure 3) is intended to ensure that the diagonal tension field load in the
buckled skin is reacted by compression loads in the stiffener(s) rather
than in the test frame members. The breather joint consists of thin steel
angles bolted to the thickened laminate at the edge of the skin, and these,
in turn, are bolted to similar angles attached to the test frame. The joint
acts as a bellows, capable of transmitting the applied shear load in the
plane of the frame but not permitting significant axial load to develop
across the joint. While the breather joint did induce axial compression in
the stiffeners, it also contributed to the nonuniformity of shear stress
near the panel edges, as illustrated in Figure 11 of Sobel and Sharp [1994].
Fortunately, the shear stress concentrations in the skin are well away
from the disbond failures experienced between the skin and the attached

flanges of the stiffener(s), and did not influence the test results.

The panels were instrumented with strain gauges, using rosettes on
both skin faces, and axial gauges on the stiffener web and flanges Layouts
of the gauge positions for each panel are given in the test report. The

moir_ fringe technique, described in Volume III of Visconti [1988], was
used to obtain both wavelengths and out-of-plane displacements in the
buckled skin for Panels A1 and C1. Examination of a series of photographs

of the moir_ fringes taken during the tests enabled the progression of the
buckle waves to be recorded as the load increased. A major finding of the

test program was the slow growth of new buckles progressing in from the
ends of the panel, i.e. the buckle wavelength reduces continuously as the
shear load is increased without sudden "snap-throughs".

The mode of failure observed for all the test panels was not a

failure of the bondline between the flange of the stiffener and the skin,

but rather an intra-ply failure of the epoxy matrix of the skin immediately

under the toe of the flange. This was evidenced by the pull-out of fibers
from the surface layer of the skin. It was this observation that led to the
realization that the flatwise tensile strength of the skin face material

was the key to the failure. The test failure loads (from Visconti [1988])

and buckling loads (from Appendix B) are given in Table 5.
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TABLE 2 NOMINAL LAMINATE THICKNESSES (inches)

OF TEST PANELS

LAMINATE

EACH FACE
SYt,X;OFE
TOTAL SKIN
ADHESIVE
STRAP
WRAP
TOTAL FLANGE (WRAP+STRAP)
TOTAL WEB (WRAP+WRAP)

PANEL
A 1 B1

.0336 .0224
.050 .040

.1172 .0848
.008 .008
.036 .0288
.036 .0288

.0720 .0576

.0720 .0576

Cl
.0224
.020

.0648
.008

.0216

.0216

.0432

.0432

TABLE 3 LAMINATE LAYUPS FOR TEST PANELS

(a) Skin Leyup {M6/3501-6 TaDe_

LAMINATE

SKIN FACE
Free Surface

SynCore Surface

A1

45
135

0
90

135
45

PANEL
BI

45
135
90
0

Cl

45
135
90
0

(b) Stiffener Layup (AS4!3501-6 Fabric)

LAMINATE

WRAP
Stiffener Tool Face

STRAP (inner & outer)

PANEL
A1 B1 C1

45
90
0

90
.... J_3_____

135
90
0

9O
45

45
90
0

45
90

__.t_ ...... J_5 ....
135 45

0 90
90 135
45

Free Surface

NOTES: 1. 0° plies are parallel to stiffener direction (See Figure 1).
2. The cross section and tool surfaces are shown in Figure 2.
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TABLE 4 STACKING SEQUENCE FOR SKIN & ATTACHED

FLANGE OF TEST PANELS. Stacking Sequences Are From

Skin Tool Surface (See Figure 2), And Are Used In
The Maclaminate Code To Obtain Stiffnesses For

Input To Snapps.

LAMINATE

(Material)
FACE

(IM6/3501-6 Tape)

S_CORETiilT:;iiiiiiiiiili@iititiiiiiii',iiiiiiiiiiiiiii_;ii_,iii@:_i_i::i

FACE

(IM6/3501-6 Tape)

A1

45
135

90

0
135

45

: 15 Pl:i:est_ii::i

iii,@iiii ,, iiii!ii,,33: 
45

135
0

90

135
45

PANEL

B1

45

135

90
0

C1

45

135
90

0

_1211!!Plies :_i

0 0
90 90

135 135

45 45

_I_B_I]_ i iiilti;!ii!ii!iiiiiiiii!ii::i;ii::iiii:.i iiiiiiiiilti!iii!ili iiiiiiiiiiiiii i iiiiiii!ii i i i    iiiiiii!i!ii!i!iiiiiiiiiiiiiiiiii;i iiiiiiii!!iii!i!!!ii!iiiiit!!ii ! i i i !iii!iiii ¸
STRAP

(AS4/3501-6 Fabric)

WRAP

(AS4/3501-6 Fabric)

45
90

0

90
135

_'--_-3-g---
9O

0

9O
45

45

90
0

135
135

0
90

45

45

90
135

45

90
135

NOTE" 0° plies are parallel to stiffener direction (See Figure 1).

TABLE 5 BUCKLING & TEST FAILURE LOADS FOR TEST PANELS

LOAD

Buckling Load Pcr, Kips

Failure Load Pfailtest, Kips

Buckling Shear Flow qcr, ppi

Failure Shear Flow Clfailtest,ppl

A1

37.5

85.0

634.

1403.

PANEL

B1

17.6

50.0

302.

838.

C1

4.13

64.0

63.5

962.
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APPENDIX B

BUCKLING SHEAR FLOW qcr FOR THREE TEST PANELS, AND
DEVELOPMENT OF A NEW METHOD OF OBTAINING EXPERIMENTAL

BUCKLING LOADS FOR FLAT SHEAR PANELS

The SNAPPS code input requires the value of the buckling shear flow,

qcr. This appendix describes methods used to obtain the buckling shear

flow for the three panels A1, B1, and C1 (see Appendix A) analyzed here.

B.1 Bucklina Load for Panel C 1

Sobel and Sharp [1994] performed a STAGS [Almroth, et al., 1982]

analysis for one of the panels, panel C1. The detailed finite element
model includes the skin, stiffener, breather joint and loading frame. The
STAGS results for C1 are as follows:

• C1: Pcr,STAGS = 4.13 Kips, qcr,STAGS -- 63.5 ppi (1)

where P is the load applied at two opposite corners of the test frame (see

Figure 1 of Appendix A). A new method, described next, was developed
here for obtaining the buckling loads for the other two panels.

B.2 Description of a Method of Obtainin_a Experimental Buckling Loads
For Flat Shear Panels B Based on the Dia_aonal Tension Factor. k

As is well known, the determination of buckling loads for flat panels

from test results is notoriously difficult because the buckles initially

develop slowly with little out-of-plane distortion and it is hard to
recognize the load at which they first appear. This is particularly so if
the stiffeners are on one side of the skin only, so that bending out of the

original flat plane of the skin occurs immediately upon application of
load, and is aggravated if the as manufactured skin is not perfectly flat.

Usually, the buckling load is estimated from plots of measured skin
strains by finding the load at which the strains bifurcate or begin to grow.
Such estimates are sensitive to the location of the strain gauges relative

to the nodal lines of the initial buckle pattern. This, together with

variations in user judgment, can lead to ambiguous answers.

A method is presented here for determining experimental buckling
loads for shear panels. The method employs the "diagonal tension factor",
k, which is a measure of the amount of diagonal tension developed in the

buckled skin. Following the model of Kuhn [1952 & 1956], which is also
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described by Perry [1950], and referring to Figure 1, which is adapted
from Figure 8 of Kuhn [1952], the applied shear flow q is assumed to be
divided into two parts, a portion (1-k)q carried by shear resistant (SR)
action of the skin, and the remainder kq carried by diagonal tension (DT)

action in the (post)buckled skin, i.e. by a tensile stress in the direction of

the folds of the buckled skin. The objective of the method is to derive an

expression for k as a function of membrane stress resultants Nx', Ny, and

Nx,y,=q>0", where x' is normal to the stiffener direction, and y' is parallel
to the stiffener (or axial) direction. These resultants are calculated from
strain gauge readings (a considerable effort in itself) and analytically
determined skin stiffnesses. Because k is a measure of the amount of

diagonal tension developed in the skin, a zero value of k infers initial
buckling. Therefore, an unambiguous estimate of the experimental
buckling load can be obtained by plotting k against load to determine the

load at which k is zero. The expression relating k to Nx', Ny 0 and q is

derived next.

From standard stress resultant transformation equations (or use of

Mohr's circle, see Perry [1950]), the following expressions for the skin

stress resultants, Nx, Ny, and Nxy, in the diagonal tension axis system x, y

(where, see Figure 1, x is parallel to the direction of the diagonal tension
fold, and y in normal to it in the plane of the skin) can be written in terms

of the applied skin shear flow q:

fN"X/ l"xt f"x 
tNxy/ _Nxy/SR _NxyIDT

f (1-k) q sin(2°_)/ /2kq/sin(2°')/

(1 k) q sin(2o_)_ +/ 0 /DT
= t-(1 k) q cos(2o_)/SR

- sin(2(z) + 2kq/sin(2a) 1! (1 k) q_ (l-k)

(1 -k) qq cos(2o.)sin(2a') /
(2), (3), (4)

In these equations, the diagonal tension angle, o_, is the angle the diagonal
folds make relative to the normal to the stiffener direction (i.e., o_ is

measured from the structural axis, x', to the diagonal tension fold axis, x).

Equations (2) and (3) are given in Kuhn [1952 & 1956] and Perry [1950], and

• Throughout this work, q is taken to be positive, as is its buckling value, qcr.
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Eq. (4) stems directly from the stress resultant transformation equations.
From Eq. (4) it may be concluded that the direction of the diagonal tension
fold is generally not the same as the principal stress direction unless all
the shear is carried by diagonal tension (k=l), or if o_---45°.

To relate k to the stress resultants in the structural axis system,
we invoke the first stress invariant, namely, that the sum of normal
stress resultants is invariant with respect to an orthogonal
transformation of coordinates, i.e.,

Nx + Ny = Nx' + Ny, (5)

and we substitute Nx and Ny from Eqs. (2) and (3) into this equation to
obtain

k = (Nx, + Ny,) sin(2(z) (6)
2q

To express k as a function of the three stress resultants only, we need a
relationship between (x and the resultants. To obtain this relationship, we

equate the maximum principal stress resultant expressed in the structural

(x', y') and diagonal tension (x, y) axis systems to get

(Nx,+Ny,)+_/(Nx,-Ny,)2 +q2 = (Nx+Ny)+,_/(Nx-Ny)2 +N2xy
2 4 2 4

Eliminating the sum of the resultants on each side of this equation by

virtue of Eq. (5,) and then squaring the radical gives

(Nx'- Ny'_ + q2 = (Nx- Ny_ + N2xy
4 4

which is also recognizes as being the square of the radius in the x and x'
directions of Mohr's circle for stress resultants. To eliminate the stress

resultants Nx, Ny and Nxy in the diagonal tension axis system, we
substitute Eq. (1), (2) and (3) into this equation to get

(Nx'- Ny') 2 =
2kq

isin(2(x) 2
+ 2(1 -k)q sin(2(x) + 4(1 -k)2q 2 cos2(2(x.) - 4q 2
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2kq ]2
= ÷8kh_k)q2+4(1-kFq2- 4q2

Lsin(2_)

2kq ]2
, - 4k2q2

Lsin(2(z) (7)

q on the right hand side of this equation may be expressed in terms of

Nx' and Ny, by summing Eq. (1) and (2), and using Eq. (5) to give

=[ 1
(Nx' " Ny')2 Lsin--(-2-(x)] (8)

so that Eq. (7) becomes

(Nx,- Ny'} 2 = (Nx' + Ny') 2- (Nx, + Ny') 2 sin2(2o0 = (Nx, + Ny') 2 cos2(2o_)

Thus, the angle of diagonal tension is

(:X= 1COS-1 [Nx' " NY' / (9)

2 _Nx' + Ny'/

TO get the final expression for k in terms of the stress resultants in the

structural axis system, we square Eq. (6) for k to get

k 2 = (Nx' + Ny') 2 sin22_ = (Nx' + Ny')2 (1-0os22_)

4q 2 4q 2

and substitute oc from Eq. (9) to yield

k 2 = (Nx' + Ny')2 (4Nx'Ny')

4q 2 (Nx' + Ny') 2

from which, finally

k = _/Nx' Ny, (1 0)
q
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Experimental values of k, as a function of load level, are obtained
from this equation by calculating the stress resultants Nx0,Ny, and q from
strain gauge readings and analytically determined skin stiffnesses. As
mentioned earlier, the parameter k is a measure of the amount of diagonal
tension developed in the skin. Therefore, by plotting k against the load P
and extrapolating the plot back to the load at which k is zero (which
infers buckling), an unambiguous estimate of the buckling load, Pcr, can

be obtained. The corresponding value of the buckling shear flow, qcr, is
obtained from a (very nearly linear) plot of the skin shear flow, q (also
calculated from the measured strains), against P, and determining the
value of q corresponding to Pcr-

B.3 Buckling Results Based on the "Diagonal Tension Factor Method"

Panel A1 was instrumented with back-to-back rosette gauges on the

skin at the center of the center bay between the two stiffeners, and at the

quarter points of the center and one side bay, see Visconti [1988]. The
measured strains recorded during loading to failure were averaged for

each pair of back-to-back gauges. Using calculated skin stiffnesses, the

stress resultants Nx,, Ny, and q were obtained, and these were then

averaged for the three locations The factor k was then calculated from

Eq. ,(10) and plotted against load, as shown in Figure 3. By linear
extrapolation back to the load at which k is zero, the estimated buckling
load Pcr and the corresponding value of qcr are

• AI: Pcr = 37.5 Kips, qcr = 634 ppi (11)

The same procedures were applied to panel B1, as shown in Figure 3,

resulting in the following values:

• !]1: Pcr = 17.6 Kips, qcr = 302 ppi (12)

Panel C1 was instrumented with back-to-back rosette gauges at the

center of each bay of this one-stiffener panel. The recorded strains were
averaged for each pair of back-to-back gauges. The value of the diagonal
tension factor k was then calculated. This procedure was performed for

three test runs: a preliminary run to 16 Kips in increments of 2 Kips; a

second run to 10 Kips in 1 Kip increments to more accurately record the
buckling behavior, and the final run in 4 Kips increments to failure (see

Visconti [1988]). The plots of k versus load for each test are shown in

Figure 4, together with a linear curve fit to the combined set.
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The results for panel C1 are:

• (31: (Pcr)k=0 = 3.96 Kips, (qcr)k=0 = 60.8 ppi (13)

The subscript "k=0" is appended to these results for C1 to distinguish

them from the STAGS results given in Eq. (1). Comparison of Eqs. (13) and

(1) for C1 shows that the method developed here gives a value of qcr that

is within 4% of the STAGS prediction. Either of the two close value of qcr

for C1 can be used as input to SNAPPS with inconsequential differences in
results. We choose to use the STAGS value (Eq. (1)).

B.4 Closino Comment

Although the above favorable correlation between values of qcr

obtained by the "diagonal tension factor method" and STAGS is
encouraging for panel C1, it is to be emphasized that more work is

required to verify the adequacy of this new method.
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APPENDIX C

PRINCIPAL STRESS RESULTANTS IN SKIN

0.1 Introduction

This appendix presents expressions for the principal inplane
membrane stress resultants N1 and N2 as a function of the shear load. N1

is positive when it is in tension, and N2 is taken to be positive when it is

in compression. Expressions are also given for the inplane stress

resultants Nx' and Ny,, which are, respectively, normal to the stiffener
direction, which is the global x' direction, and parallel to the stiffener

direction, which is the global y' direction. The global (x', y') axis system
is also referred to as the structural axis system. The skin is loaded by an

applied inplane shear flow q relative to the structural axis system. The
shear flow can be applied in either of two directions for a fixed stacking

sequence. Throughout this work, q is taken to be positive, as is its

buckling value, qcr-

Prior to buckling, the principal stress resultants equal q and make
an angle of 45 ° relative to the global axes. The objective here is to

determine their values after buckling. The expressions for the stress
resultants are based on two simplifying assumptions (Eqs. (1) and (5))

that are reasonable for the objective of developing a simplified

postbuckling method. The validity of these assumptions is confirmed by
comparing predictions based on them with test results for the three test

panels A1, B1, C1 described in Appendix A.

C.2 Principel Stress Resultants

The angle of diagonal tension (see Figure 1 of Appendix B) for flat

shear panels is assumed to be

(z=45 °. (1)

Figure 1 of Section 3 shows that this is a good approximation for the
three tested. The experimental values of (Y, in this figure are based on Eq.

(9) of Appendix B, which is repeated below for completeness:

o_ = 1cos-1/Nx' " Ny' /

2 _Nx, + Ny, J
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For this assumed value of o_, Eq. (4) of Appendix B states that the
shear stress resultant, Nxy, in the diagonal tension axis system vanishes.
Hence, the direct stress resultants, Nx and Ny, are in fact principal
resultants, N1 and N2, i.e., the principal stress resultants line up with the
diagonal tension folds at all load levels. Noting that N2 is assumed to be
positive when it is in compression, Eqs. (2) and (3) of Appendix B give

N1 = (l+k)q (2)

and

N2 = (1-k)q (3)

where k is the diagonal tension factor described in Appendix B. Based on

test results for aluminum panels, Kuhn [1952] gives the following

empirical expression for k:

kKuhn.DT = Tanh[0.51og(q/qcr) ] (4)

For the three panels considered in the present work, Figures 2 through 4 of

Section 3 compares principal stress resultants obtained from Kuhn's

diagonal tension (DT) model based on k from Eq. (4) with results from
tests and STAGS (for C1 only). The STAGS results agree well with those
from test, but the Kuhn-DT model slightly under-predicts the maximum

principal diagonal tension stress resultant, N1, but considerably over-

predicts the minimum principal stress resultant, N2, in the buckled panels.

Furthermore, as may be observed from Figure 1, the Kuhn-DT model

predicts a significant degradation in shear stiffness with increasing load
in comparison with the measured and STAGS results for C1. For example,
at the test failure load, the shear strain predicted by the Kuhn-DT model

is about 30% higher than that of the test and STAGS for C1. Also,
examination of the STAGS and test results in the figure reveals that the

overall shear stiffness of the panel is constant', and is equal to the initial

shear stiffness (c.f., the linear and nonlinear STAGS analysis results.), a

result that we use in Appendix E, where we calculate the maximum out-

of-plane displacement as a function of load. In view of these findings, we
decided not use Kuhn's empirical expression for k. Besides, we want the

• Note, however, that there is a reduction in overall stiffness at the bifurcation buckling point,
of course, as is evidenced from a plot of the overall corner displacement, ,5, at the loaded
comer against the fixture load, P, as shown in Figure 7 of Sobel and Sharp [1994]. The slope
of the P-8 curve is a measure of the overall stiffness of the panel and therefore represents all
stiffnesses, including out-of-plane bending stiffnesses, as is evident from the energy
consideration that P5/2 equals the paners total strain energy (bending plus membrane).
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SNAPPS methodology to be devoid of all empiricism. To obtain k, and
hence N1 and N2 via Eqs. (2) and (3), we make a further assumption;
namely, that the compressive principal resultant after buckling, N2, is
constant for all values of q and equal to the buckling shear flow, qcr, i. e.,

N2 = qcr, (for q >_qcr) (5)

With this assumption, Eq. (3) gives

k = 1 - qcr/q (6)

Inserting Eq. (6) into Eq. (2) provides the following expression for the

tensile principal resultant after buckling:

N1 _- 2q-qcr, (for q >_qcr) (7)

This view of events is similar to that proposed by Wagner in the "frame

analogy", as described by Kuhn [1952] and illustrated in Figures 3a and 3b
of Kuhn. It is noted that Kuhn first gives an expression for k (Kuhn's Eq.

(26)) that is the same as the "Wagner-type" expression for k ((Eq. (6)
above), but later abandoned it in favor of an empirically determined

diagonal tension factor, Eq. (4).

It is important to point out that if N2 was assumed to increase (in

an absolute sense) above its value at buckling, then N1 would have to

decrease by the same amount in order for the sum of (NI+ N2) to remain

constant (in accord with the first stress invariant principle), and this

would lead to a higher predicted failure load, qfail. Thus, the assumption

that N2 = qcr after buckling is conservative. On the other hand, it would be

unrealistic to assume that N2 is zero for all values of q, i.e., to assume a

state of pure diagonal tension.

0.3 Direct Stress Resultants in Structural Axis System

Using standard equations for transformation of stresses from one

orthogonal axis system to another, we readily obtain from the expressions
for the stress resultants in the diagonal tension axis system (Eqs. (5) and

(7)), the following expressions for the stress resultants in the structural

axis system:

N x, = Ny,-- q-qcr, (for q > qcr) (8)
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As a check we substitute these equations into the general expression for
k, (Eq. (10)) of Appendix B, repeated below for convenience,

k = _/Nx' Ny'
q

to obtain

(9)

k = 1 - qcr/q

which is Eq. (6).

C.4 (_losinq Comments

The principal stress resultants described by Eqs. (5) and (7) are
averages over the extent of the buckle. However, they can be used to

approximate integrated quantities such as the buckle wavewidth, c

(Appendix D); the maximum out-of-plane displacement, 5max (Appendix E);

and the rotation at the end of the tie-rod, e (Appendix F).

Postbuckling values of the principal stress resultants are also
needed for local considerations at the toe of the flange. There the skin is

flat and can be assumed to be in a state of pure shear. This means that
the stress resultants in the skin under the toe in the diagonal tension

field direction are given by

Nltoe = N2toe = q, (for all q) (10)

It is to be recalled that N2toe is taken to be positive when it is in

comression, and that q>0. Equation (10) is used in Appendices H, I, and K
to describe local stresses in the unbuckled skin under the toe of the

flange.
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APPENDIX D

BUCKLE WIDTH & LENGTH

D.1 Buckle Width

Figure 1 depicts a buckle bounded by adjacent nodal lines and the

stiffener flanges. The buckle width c is determined next from
considerations of out-of-plane equilibrium. If we assume that the buckle

may be approximated by the rectangle ABCD of length £ and width c, then

we may take the out-of-plane displacement _ as

5(F_,TI)=Smax sin-_ sin_c_ (i)

where the axis system has its origin at B; _ is measured from B to C,'qis

measured from B to A. The stress resultant in the _ direction is tensile

and is denoted by N1; that in the _1 direction is compressive and is denoted

by N2 (a positive N2 is compressive). As discussed in Appendix C, they are

assumed to be constant throughout the area bounded by the rectangle

ABCD. This piece of the buckled sheet has to be put into equilibrium

normal to its original flat plane, under the components of N1 and N2 acting

through the slopes along the edges of the distorted shape.

The total out-of-plane force due to the tensile stress resultant N1

acting at the angle dS/d_ along one edge of the buckle (such as AB in

Figure 1) is then given by

N1 d5 dTI = 2 N15rnax _C_
=0

This must be balanced by the following out-of-plane force due to the

compressive stress resultant N2 acting at the angle dS/d_l along a nodal

edge of the buckle (such as BC in Figure 1):

IiN2(dS)q_ =0d_=2N25maxLc
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By equating these two forces, we obtain

2 N1 5max c = 2 N2 5rnax L
f. C

It is seen that 5max in this equation conveniently cancels out ((3max is

determined in the next appendix) thereby providing the following
expression for the buckle aspect ratio:

_-= _N_ (2)

In terms of known quantities, and assuming that
angle o_ is 45 °, the length £ can be written as

£ :/b-2L,l
_C----_t" C

the diagonal tension

From Figure 1, b-2Lf is the length OC, denoted by L, the known toe-to-toe
COS_

distance between flanges measured in the diagonal tension axis system,
i.e.,

/b-2Lfl
L = _c-_EE-/ (3)

Thus

_.=L-c

so that Eq. (2) yields the following expression for the buckle wavewidth:

in which (see Appendix C)

N l= 2q - qcr, (q>qcr),

(4)

(5)

(6)N2= qcr, (q>qcr)-
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It is to be recalled that positive N1 is tensile, and positive N2 is

compressive.

At buckling, for which NI= N2, Eq. (4) yields

(o) 1L r=2 -

whereas, from Timoshenko and Gere's [1961, page 383] buckling analysis

of a long, simply supported, isotropic plate under shear, it may be shown
that

C)c 1L r,Timo -- 2"

It is proposed that Eq. (4) be modified to pass through this buckling point
to give

c = f 5-L 22 Lf 
= 1 ' N2

# qcr
= 1.225 L 2q-qcr

Ocr2q-qcr
(7)

From the last term on the right, it is seen that the wavewidth c is

expressed as a function of the load level q. Effectively, we determined
the shape of the c vs. q curve from equilibrium considerations, and

adjusted the amplitude (by 22.5%) of the curve to have the curve pass

through the buckling point.

D.2 Buckle Length

The axial wavelength, Lb, which is the projected length of the

wavewidth along the stiffener axis, is used in Section 3 for correlating
SNAPPS results with those from test and STAGS. From Figure 1, it is seen

to be given by

=__c___ (8)
COS

From Eqs. (3) and (7), and with the angle of diagonal tension equal to 45 °,
the wavelength may be written in the following dimensionless form:
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= 2.45

1+ N_12

(9)

where

btt = b-2Lf (10)

is the toe-to-toe width of the skin, measured normal to the stiffener
direction (see Figure 1). Note that this form for the wavelength is valid

for all panel geometries. A comparison of predicted and measured

wavelengths based on Eq. (9) is given in Section 3.
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APPENDIX E

MAXIMUM OUT-OF-PLANE DISPLACEMENT

As we saw in the preceding appendix, the out-of-plane displacement,

8, through its effect on the slopes at the boundaries of the buckle, governs

the out-of-plane equilibrium of the buckle, from which we were able to
determine the buckle width c. Now we need to find an expression for the

maximum value of the displacement, 8max. The following derivation is

based on the kinematic argument that the buckled sheet must fit into the

distorted shape imposed by the nodal lines and the stiffeners, and that,
after buckling, it does this by moving out of its original flat plane into the
characteristic shear buckling pattern.

Figure 1 shows a single buckle, bounded by adjacent nodal lines and
by the toes of the stiffener flanges. The length of the nodal line OCis

assumed to remain unchanged in a shear distortion, and the length d of the

shorter diagonal AC is given by

di 2 = L2 + Lb 2 - 2LLbcos(_/2-(_)

= L2 + Lb 2 - 2LLbsin_ for small values of %

Imposing a shear strain y, such that (_ becomes (_+y, the new length of the

diagonal AC is given by

dn 2 = L2 + Lb 2 - 2LLbsin(_) +y)

= (L 2 + Lb 2 - 2LLb sin(_) - (2LLby cos_) for small values of y.

Increasing the shear strain from the buckling value 'Ycr to y, and expressing

the change in the length of the diagonal AC as a strain c_ [i.e. where _ =

(new length - old length)/old length] gives

E:d= (dn-di)/di

_d =
[L2+Lb2-2LLb sin_ -2LLbyCOS(_] 1/2- [L2+Lb2_2LLbsin_ _2LLbYcrCOs$]l/2

L2+Lb2_2LLbsinO _2LLbYcrCOS(_]l / 2

By expanding the radicals, and neglecting terms in _2 or higher powers, the

expression for gd can be approximated by
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LLb(_/'Tc r) cos_
rh:::i"

L 2 + Lb 2 - 2LL b sin(I)

But L-- bE sec_ (see Figure 1) and d 2 = (L2 + Lb 2 - 2LLb sin(l:)) so that the

approximation for Ed may be written as

d 2

where the minus sign denotes compression.

Now, to obtain an alternate expression for F-_.din the postbuckled

panel, define an axis X along the diagonal AC, and assume the out-of-plane
displacement to be

2 d 1

It is straightforward to show that this assumed displacement variation

along the diagonal d is consistent with the double-sine displacement
shape (Eq. (1) of Appendix D) used in the preceding analysis for the

determination of the wavewidth c. Later we will show that 5max is

insensitive to the assumed displacement shape. Integrating the length ds
along the curve from 0 < 7,, < d, using

(:is ] + = i + ]- sin for small
dz dx 2 d

gives the length the total S measured along the curve as

Expressing the change of length as a strain _d [= (6-$)16 ] yields

4- =- x (2)
d

E-2



Equating the two expressions for _;d, Eqs. (1) and (2), provides the

following closed-form expression for the maximum out-of-plane

displacement:

(_max = 2_Lbbtt(7-_/cr) (3)
/[

It may be noted that the precise shape of the out-of-plane distortion
is not very critical, because we are integrating along a curve and

expressing the result as an average (E.d). In a study in which different

expressions for the assumed shape were used, such as circular arcs,

parabolas, fourth-order polynomials, sine and sine squared waves, Eq. (3)
retained the same form and the multiplier in front of the radical changed

by less than 7% from the higher and hence more conservative value of 2/_;.

Because the STAGS analysis and test results for panel C1 [Sobel &

Sharp, 1994] and the test results for panels A1 and B1 [Visconti, 1988]
revealed that the skin shear stiffness Gt did not change with applied load

level (see Figure 1 of Appendix C, and discussion therein), Eq. (3) can be
written as

5max = 2,_ LbbJq'qcr_ - (4)

In this expression, btt is the toe-to-toe distance measured normal to the

stiffener direction, i. e.,

btt = b-2Lf (5)

where b is the stiffener spacing, Lf is width of the flange measured from

stiffener centerline to toe, and Lb is the buckle wavelength projected

along the stiffener axis. An expression for Lb is given in the preceding

Appendix.

An alternative form for the maximum out-of-plane displacement

may be obtained by inserting

Lb -- c sec_ and btt = L cos_ (see Figure 1),

into Eq. (4). This yields the following formula, written

diagonal tension axes:

lq-qcr I
_max = 2..V/Lc ----_-- '

in terms o f

(6)
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In this equation, L is the toe-to-toe length of the diagonal tension fold,
and c is the buckle width for which the following expression is derived in

the preceding Appendix:

= 2q-qcr

c = "1_-5 L {1+ _N_ J "tr_"5 L/1+ A / qcr
-V 2q _-q-Cr (7)

The form for the maximum out-of-plane displacement given by Eq. (6) is

used in the SNAPPS code of Appendix N.

From the last two equations, the maximum out-of-plane

displacement may be written in the following dimesionless form:

(_max

L ]/2('_cr)

2(1 -1
qcr

2(1.5) 1+ 2 (I -1
qcr

11
(8)

0.7045

/_ 12 (I -1
qcr

,,_ 11+ 2 q -1
qcr

(1 -1}qcr

This dimensionless form for 5max is used in Section 3 to compare

predicted and measured values of the maximum out-of-plane

displacement. Note that form is valid for all panel geometries
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APPENDIX F

TIE-ROD ANALYSIS

F.1 Introduction

The development of the simplified analysis now proceeds to the

"tie-rod" analysis in which a unit width of skin parallel to the long axis of

the diagonal tension buckle is assumed to be loaded axially by the tensile

stress resultant, N1, and by a lateral load p, which is normal to the

original unbuckled plane of the skin and which represents the out-of-plane

component of the compressive stress resultant N2. For this simplified

analysis, it suffices to assume that N1 and N2 are constant along the

length of the tie-rod, but, in fact, both stress resultants vary along the

length and fall to the unbuckled values at the toe of the flange. Because

the angle through which N2 acts varies, the lateral load p is assumed to

vary sinusoidally along the length of the nodal line, a variation consistent

with those used in the wavewidth (Appendix D) and maximum out-of-plane

displacement (Appendix E) analyses. The objective of the tie-rod analysis

is to obtain a closed-form expression for the rotation e at the end of the

tie-rod in terms of the axial load N1, the maximum out-of-plane

displacement 5max, and the moment M at the end of the tie-rod.

Figure 1 shows the tie-rod model. The upper half of Figure l a

depicts the assumed bi-sinusoidal buckle pattern in a typical diagonal

tension fold, and the shaded strip in the lower half represents one-half of

the tie-rod model, which extends along the entire length, L, of the buckle*.

The tie-rod model is further displayed in Figures lb to ld. From Figure

lc it is seen that the vertical (out-of-plane) component of the

compressive membrane force, N2, produces transverse shear forces at the

edges of the tie-rod. As just mentioned, these edge forces are assumed to

vary sinusoidally in the direction of the fold (Figures lb and ld) and are

represented by a lateral (out-of-plane) running load, p (Figures l b and lc).

* The stiffener is not shown in the figure, to avoid excessive clutter. However, the downward

deformation of the buckle, implies that the stiffener is on the top surface of the skin (on the

surface with the negative y coordinate.
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The running load p is reacted by the edge forces R (Figure ld). Thus, R
balances the vertical component of N2 that varies along the longitudinal

edges of the strip.

For simplicity, the tensile axial load in the tie-rod model is held

constant at it's average value (i.e. N1 = 2q-qcr, see Appendix C)and the

solution is then tractable. In fact, the axial load must be slightly above

the average value over most of the length of the tie-rod, but must fall,

over an undefined--but assumed small--distance at each end, to the value in

the unbuckled sheet (i.e. Nltoe = q, see Appendix C )

F.2 Solution Of Tie-Rod Problem

Figure 2 displays the notation and sign conventions. The x axis is in

the direction of the diagonal tension fold, and it's origin is at mid-length

of the fold. The y axis is normal to the plane of the skin. Because the

solution of the tie-rod problem is straightforward, it is presented in

more-or-less outline form.

• Relate Reaction R to Magnitude (p_)of the Pressure D

EIR= 2  ocos = po (1)

• Differential Eauation _DE), [Timoshenko, 1956]

Dsrw .... -NlW"=Po cos(_-) (2)

where ( )' =--_x) and Dsr is the bending stiffness of the skin (subscript "s"

for "skin", subscript "r" for "rotated" in the direction of the diagonal

tension fold).

Letting"
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The DE becomes:

w - _,2w" =_ cos
(4)

• ComDlementary Solution. wc

The solution of the homogenous form of Eq. (2) is

Wc -- ACosh (_.x) + BSinh (Xx) + C +Dx

• Particular Solution. Wp

A particular solution of Eq. (2) is easily shown to be:

Wp = r--B-- cos(_ -)N1
(5)

where r, which has dimensions of length, is given by

L
r= (6)

• Total Solution. w = Wc + Wp

w = ACosh (_.x)+ BSinh(Xx) + C +Dx +r __R_cos (:E__)N1
(7)

Because the displacement must be symmetric about the midlength,

the two asymmetrical terms (B Sinh (Xx) and Dx) must vanish.

X=0,

Therefore,

N1
(8)
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The arbitrary constants (A and C) in this equation are determined from the

following boundary conditions (BC) at x--+ 2L):

BCI: M(+L}=M, (whereM is depicted in Figure ld)

Using M -- -Dsrw" (see Figure 2b) and Eq. (3), BC1 becomes:

(L) -_Dsr = -_L2-M--'N1w" _+2 =

Substituting

constant A:

Eq. (8) for w into the above expression yields the arbitrary

A = -Sechl_'LI -_--
_2 tN1

(9)

The constant C is obtained from BC2 and Eq. (9):

()---C = -ACosh IXLI= +Sech Cosh L_L___M._ M (1 0 )
_/2 2 N1 N1

Substitution of these constants into Eq. (8) provides the solution for w:

w(x) =[1 CoshC°Sh(Xx)l--_-+ r FI cos(=X)

• .Rotation at Left En_(x ;-_}, e

Differentiating Eq. (11) once gives:

w'(x/-- -a _ Sinh (_x)
-r R__ sin(X____.) (12)

NI L
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Therefore, the rotation, e, at the left end x = __EL,see Figure ld, is:
2

e= +w'(-_)= +XTanh (X_L-)_-_-I+ r N-_I_L

• M_ximqm Displacement, 5rnax

_max = w(0) = [1
N1 N1

• Simplification of EQs. (13) and (14) for Large Values of XL

• Tanh term in e

Tanh(X-_-) _1 f°r X--L-> 2' °r XL >42

• [1- Sech(2-_-)] term in,max

Assuming a 10°/o error in neglecting Sech(k_)
in comparison

with unity gives

(13)

(14)

XL=3=XL>6
2

1 + I-z;-I2 term in denominator of r (Eq. (6))
_ /XL

Assuming a 10% error in neglecting (_)2 in comparison with

unity gives

(_-)= _---_-- = 9.9, or _.L> 10,,.-_ 2 0.1 =_ ;LL = t/_.n_1''''"
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=_r= L
71;

With the above approximations, the equations for the rotation and

maximum out-of-displacement simplify to

e=X M +..B_R (18)
N1 N1

8max= M +L_R__ (1 9)
N1 _ N1

In view of the above discussion the simplified equations for e and 5max are

valid for:

ZL > 10 (20)

The simplified expressions given by Eqs. (18) and (19) are used in this

report.
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APPENDIX G

SKIN BENDING MOMENT AT TOE, Mtoe

G.1 Introduction

The purpose of this appendix is to determine the bending moment in

the skin immediately under the toe. This is done by linking the "tie-rod"

model, described in the previous Appendix F, to a model of the combined
stack of the skin, flange and adhesive layers between the toe of the flange
and the heel (or stiffener centerline). The latter model is based on that of

Tsai [1983] in that it is cut from the stiffener in the same diagonal axis

as the tie-rod model of the skin, but departs from Tsai's model in that it
includes the entire stack of layers, adhesive and SynCore of the skin and

the flange (for this reason, properties of the total stack have the
subscript "tot" and, because they are in the diagonal tension or rotated

axis system, "totr"). The model of the combined skin and flange is
represented by a cantilever in the diagonal tension direction, clamped at

the stiffener centerline and loaded at its tip by the transverse shear force
and bending moment from the end of the tie-rod. The moment is

determined by requiring rotational compatibility between the tie-rod end
and the tip of the cantilever. Because the transverse shear force is

related to the moment through the maximum out-of-plane displacement
5max of the tie-rod, the only unknown in the equations for the rotations is
the moment.

G.2 R@tetign at End of Tie-r@d (see Figure 1 of Appendix F)

From Eq. (18) of Appendix F, the rotation at the left end of the tie-

rod, is given by

= X M+ R (1)
N1 N1

and from Eq. (19) of the same appendix, the transverse shear force at the
end of the tie-rod is

(2)

In these equations,
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Dsr
(from Eq. (3) of Appendix F) (3)

and

L is the toe-to-toe length of the buckle, see Figure 1 of Appendix E,

(Smax is the out-of-plane displacement at the center of the tie-rod,
as described in Appendix E,

N1 is the membrane stress resultant in the buckled skin in the

diagonal tension direction,
Dsr is the bending stiffness of the skin about it's neutral axis

normal to the long axis of the buckle.

Eliminating R/N1 from these equations gives

(4)

G.3 Rotation of "Fianae and Skin',;. Cantilever Model

Figure 1 shows the beam model of the combined skin and flange. The
beam is assumed to be clamped at the heel, an assumption justified by the

STAGS results of Figure 2. Any elementary strength of materials text

provides

,2
0totr -- I Wtoe Lfr + (Mtoe- qz) L fr

2 Dtotr Dtotr
(5)

where

Wtoe = the transverse shear at the tip of the cantilever,

M toe-- the bending moment at the tip of the cantilever,

Dtotr = the bending stiffness of the combined stack of skin, adhesive

and flange,
Lfr = the heel-to-toe width of the flange measured in the direction

of the diagonal tension fold,

qz = the moment due to the offset of the skin stress resultant from

the midplane of the combined stack, as described below.

As described in Appendix F, the tensile axial load in the tie-rod

model is held constant at it's average value (i.e. N1 = 2q-qcr, see Appendix

C). In fact, the axial load must be slightly above the average value over

most of the length of the tie-rod, but must fall, over an undefined --but
assumed small -- distance at each end, to the value in the unbuckled sheet
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at the toe (i.e. Nltoe ---q, see Appendix C). When the tie-rod is connected to
the tip of the cantilever the change in N1 at each end of the tie-rod must
be taken into account. The tensile end load transferred from the end of
the tie-rod to the cantilever is therefore Nltoe = q and not N1 =2q-qcr. At

first sight, it appears that equilibrium is being violated, but the change is
assumed to occur over a short length at each end of the tie-rod and is

brought about by local in-plane shear stresses in the skin near the toe.

These local changes are assumed not to invalidate the solution of the tie-
rod problem.

In Eq. (5) an additional moment (qz) has been added to Mtoe to

represent the moment due to the membrane stress resultant in the
unbuckled skin at the toe (i.e. Nltoe -- q) being offset a distance z from the

centroid of the combined stack of the skin and flange layers (see Figure 1).

z is given by

z = Etflts + ta +_f) + Ets r-t-_2 t s

Etfr + Etsr 2
where

Etfr = membrane stiffness of the flange in the diagonal tension
direction

Etsr = membrane stiffness of the skin in the diagonal tension
direction

tf = flange thickness

ts --- skin thickness

ta = adhesive thickness

(6)

G.4 Determination of Bendinq Moment _, Tran_verFe Shear Force at Toe

By enforcing the following conditions, obtained by comparing Figure

1 of this Appendix to Figure ld of Appendix F:

i

M =- Mtoe (7)

R = + Wtoe (8)

e =+0totr (9)

we obtain the following expression for the bending moment in the skin at
the toe:
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Mtoe ""

 'max(, L rN,)+L,r0Z
L 2 Dtotr Dtotr

(_-/_/L+ Lf_.__L+___ L2r /
N1 Dtotr 2 L D--tootr/

(10)

where

(from Eq. (7) of Appendix D) (1 1)

_Smax=_'_Lc( q -qcrlGt'
(from Eq. (6) of Appendix E) (12)

N 1 = 2q - qcr (from Eq. (7) of Appendix C) (13)

N2 = qcr (from Eq. (5) of Appendix C) (14)

and

Gt = the in-plane shear stiffness of the skin

parallel and normal to the stiffener direction.

referred to axes

Also, from Eqs. (2), (7), and (8), we obtain the following expression for the
transverse shear force in the skin at the toe:

Wtoe = L (Nl_Tnax + Mtoe)
(15)

Equation (10) is the full version of the expression for Mtoe and is

used in the code listed in Appendix M.

G.5 Peremetric Study

In the course of applying SNAPPS, it was found in some cases that
the moment in the skin at the toe reaches a maximum and then decreases.

The following investigation of this behavior brought to light two
dimensionless parameters which govern the magnitude of the maximum

value of Mtoe and the shear flow q* at which it occurs, and which have

practical design consequences.
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Examination of typical magnitudes of the various terms in Eq. (10)
reveals that Mtoemay be roughly approximated by dropping terms in the
numerator and denominator. The expression for Mtoe then simplifies to

+max(,
IVltoe= L 2 Dtotr/

N1

(16)

By substituting for (Smax, c, and N1 and 2,. in terms of q and qcr, it can be

shown that Mtoe can be expressed in terms of two dimensionless

parameters and a function of q/qcr.

Mt°e,'_ Gt =(1 -qcr L2r q ) f{ q )
qcr Dsr Dtotr q-cr

(17)

The function f(q/qcr) rises monotonically against q/qcr, but the

presence of the parameter qcr L2r makes it reach a maximum and then
Dtotr

fall, as illustrated in Figure 3 where Mtoe is plotted against q for panel C1.

(Neither A1 or B1 reach the predicted maximum value of Mtoe, as is shown

in Figures 4 and 5.)

The form of Eq. (17) indicates that, for a specific panel, if we plot

Mtoe against q, and search for the maximum value of Mtoe, and the value (q*)

of the shear flow at which it occurs, then we can plot both the maximum

moment parameter a---_r.r'_ Gt and the shear flow q*/qcr at which it

occurs, against qcr L2r
Dtotr

Analyses, using the full version of the expression for Mtoe given in

Eq. (10), were done for the three test panels, A1, B1, and C1. In each case,

several different values of qcr L_r were used, obtained by varying the
Dtotr

bending stiffness of the combined skin and flange stack, Dtotr. The

resulting values of Mt_._ and q*/qcr are plotted against qcr L2r in
qcr V Dsr Dtotr

Figures 6 and 7. In each figure the solid symbols denote the nominal panel
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and the open symbols are for the variations. Both figures show that the
results from all three panels can be approximated by a single curve, as
predicted by the approximate form of Eq. (16). It is apparent that both
curves are fitted quite well by hyperbolae, and that the maximum toe
moment can be approximated by

Mtoe,max = 0.35 (Dtotr/Lfr 2) _Dsr/Gt

occurring at a shear flow

(18)

q* = 0.59 Dtotr/Lfr2 (19)

G.6 Desian Implications

From a design point of view it is desirable to reduce the toe moment
as far as possible because the peel stress between the skin and the flange,
the membrane stress in the critical skin ply, and, therefore, the maximum

principal tensile stress depend on Mtoe. The above results show that the
maximum value of the toe moment increases as the skin/flange bending

stiffness Dtotr is increased, or as the flange length Lfr is made shorter.

The term _/Dsr/Gt is approximately proportional to the skin thickness and

consequently the toe moment also increases as the skin thickness ts is

increased.

In summary, these results confirm the need for compliant flanges

which impose little restraint on the deformation of the buckled sheet

(however, the stiffener must be sturdy enough to prevent the diagonal
tension folds from progressing across the stiffener centerlines).
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APPENDIX H

INTERLAMINAR SHEAR STRESS BETWEEN SKIN AND FLANGE

In this appendix, an expression is presented for the shear stress

distribution along the interface between the skin and the flange, based on

the "shear lag" analysis of Kuhn [1956]. The distribution is used in the

peel stress analysis, described in Appendix I, and the maximum value of

the shear stress, which occurs under the toe of the flange, is used in the

failure criterion in Appendix L.

Figure l a shows a section of the combined skin and flange model in

the x-z plane, where x is in the direction of the diagonal tension fold, and

z is normal to the plane of the skin. The section is of unit width in the

inplane direction normal to the fold (i.e., of unit width normal to the plane

of the paper). Following Kuhn, the skin-flange model is idealized as two

axial load carrying bars joined by a shear carrying web, as indicated in

Figure lb. The boundary conditions are that at the toe, x = 0, the bar

representing the skin is loaded by an axial tensile force P, and the bar

representing the flange has zero load. A further assumption is made that

the width of the flange Lfr is long enough for the shear stress to die away

to zero at the heel. This assumption leads to Kuhn's Eq. (4.10)

corresponding to Case 4 of Table 4.1. Adapting that equation to the Kuhn-

type model of the layered model (Figure lb) leads to the following

equation for the distribution of the interlaminar shear stress between the

skin and the flange:

Ef Af / K= Ef ; EsAsJe- x (1)

where (Kuhn's Eq. (4.4))

(2)

In applying Eqs. (1) and (2) to a unit width w of the layered model,

the axial stiffnesses EfAf and EsAsof the flange and skin in the Kuhn-type
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model are replaced by wEtfr and wEtsr respectively (where Et denotes the

product of modulus E and thickness t; the subscripts f and s denote the

flange and skin, respectively, and the subscript r denotes that these
quantities are measured in the [rotated] diagonal tension direction). The
load P is replaced by wNltoe, (where Nltoe is the end load in the skin

immediately under the toe, as described in Appendix C), and the web

thickness t is replaced by w. Further, because G is not uniform throughout
the model, the quantity G/b in Eq. (2) must be replaced by a "modulus of
foundation", denoted by _xz, which is given by Eq. (2) of Appendix J. With

these substitutions, w nicely cancels out, and Eqs. (1) and (2) become

and

1;(x) = Nltoe K ( Etfr /e-Kx
Etfr + Etsr/

(3)

(4)

The maximum value of the shear stress occurs at the toe (x = 0), and

is simply denoted by "Cxz (without any subscripts "toe"), i.e.,

_xz = (_X))x=o = NltoeK / Ettr I
_Etfr + Etsr! (s)

In the interest of keeping the model as simple as possible, a more
exact analysis is not considered worthwhile at this time. However, the

use of SUBLAM [Flanagan, 1993] to verify the distributions and magnitudes
of the peel and shear stresses between the flange and the skin, should be

part of any future work.
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APPENDIX I

PEEL STRESS ANALYSIS

1.1

A major contributor to stiffener disbonding is the peel stress

between the skin and the flange immediately under the toe of the flange.

Typical of the basic strength-of-materials approach adopted in SNAPPS, a

simple beam model is used here to determine this stress. Figure 1 shows

the model in which the skin and flange are idealized as beams that are

coupled by an "elastic, Winkler-type, foundation" of modulus _z

(determined in Appendix J). The peel stress is given by

(_peel(X) = (_z[Wf(X)-Ws(X)] (1)

where wf and Ws represent out-of-plane displacements of the flange and

skin, respectively. The peel stress and displacements vary along the

length of the coupled beams, as indicated in Eq. (1) by the axial coordinate

x, which is measd'red from the toe of the flange to its heel, in the

direction of the diagonal tension fold. The other coordinate used in this

analysis is z, which is normal to the plane of the skin. The objective of

the analysis is to obtain a closed-form expression for the peel stress at

the toe of the flange. This stress is simply denoted by (_z, (avoiding

subscripts such as "toe"). That is,

Gz = ((_peel)x=0

The beams are assumed to be of length Lfr in the direction of the diagonal

tension fold, and of unit width in the inplane direction normal to the fold.

Lfr is the "rotated" flange (subscript "r" for rotated) width measured

from the heel to the toe of the flange in the direction of the fold. The

objective is to determine wf and Ws, and hence _z, as a function of the

following three Ioadings shown in Figure 1: the transverse shear force

Wtoe in the postbuckled skin; the bending moment Mtoe in the skin; and the

interlaminar shear stress distribution "_(x)at the skin-to-flange interface.
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The interlaminar shear stress, whose presence complicates the analysis,

arises from the diagonal tension field pull Nltoe unloading some of its load

from the skin into the flange (see Figure 1). This shear stress causes a

moment on each beam because it acts at a distance from the midplane of

the flange and the skin. Thus, the present analysis may be regarded as

being an extension of the classical "beam on an elastic foundation" method

[Hetenyi, 1946] to the case in which two beams are elastically coupled

together and are subjected to an offset shear traction on their interface

surfaces.

We next make a reasonable assumption that greatly simplifies the

analysis, and which is consistent with our objective of obtaining a

closed-form expression for the peel stress at the toe, which is where the

peel stress peaks and where failure has been observed in our tested shear

panels. The assumption is based on results from detailed analyses [Cacho-

Negrete, 1978] for thin laminates joined by a thin adhesive layer. The

detailed results reveal that the peel stresses between the skin and the

flange are highly localized under the heel and toe. Because they die-away

so rapidly from each end of the flange, the two stress concentrations do

not interact and are essentially uncoupled. Thus, for purposes of

determining the peel stress at the toe, we may assume that the length

(rotated flange width, Lfr) of the coupled beams is long enough so that

conditions at one end (heel) do not affect the other end (toe).

Analytically, it can be shown [Hetenyi, 1946] that this assumption is

valid provided that the following equation involving the characteristic

wave number 13 is satisfied:

_Lfr >to.

This condition is satisfied by our tested shear panels. For example, for

panel C1, Figure 2 clearly shows that the rotated flange width

Lfr = (0.75") / cos(45 °) = 1.06"

is "long enough" so that waves emanating from one end die out rapidly

before they reach the other end. The decaying functions plotted in the
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figure represent terms in the complementary solution for a beam on an

elastic foundation. The assumption that conditions at one end of the

flange do not affect conditions at the other end greatly simplifies the

solution of the coupled beam equations and leads to an explicit closed-

form formula for the peel stress at the toe in terms of the transverse

shear force and bending moment in the skin, and the interlaminar shear

stress between the skin and the flange. This formula requires an

expression for the shear lag stress distribution "_(x) as a function of

distance along the width of the rotated flange. This expression is given in

the preceding appendix, and is repeated here for completeness:

NltoeK_{E Etfr ./e -Kx'_(x)
tfr--_ts rl

where

Nltoe is the end load in the skin immediately under the toe.

described in Appendix C, Nltoe =q.

As

(2)

and

_xz is the foundation modulus corresponding to the interlaminar

shear stress, a closed-form expression for which is given in the

next appendix,

Etsr = membrane stiffness of the skin,

Etfr = membrane stiffness of the flange.

Etsr and Etfr are measured in the direction of the diagonal tension fold.

1.2 Derivation of Equation for PQel Stress

Figures 3 and 4 display the notation, sign conventions, differential

equations, and boundary conditions for the coupled beam analysis. The

differential equations and boundary conditions differ from those of

Hetenyi [1946] by the inclusion here of the interlaminar shear stress, -c,

between the skin and the flange. They were derived here by writing

equilibrium for the general differential element shown in Figure 3a, and

using the constitutive equations given in Figure 3b. Specific forms of the

differential equations and boundary conditions for the skin and flange are
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summarized in Figure 4. It to be observed from that figure that the

interlaminar shear stress appears in the boundary conditions, as well as

in the differential equations, and that the differential equations are

coupled. Because the solution of the coupled equations is straightforward,

it is presented more-or-less in outline form.

• CouDled Differential Eauations (DE)

.lw !

DEf: Dfr wf + _z(Wf - Ws) - tf I; (3)
2

DEs: Dsr Ws"- _z(Wf - Ws)- ts _' (4)
2

where()' = d--_xx); tf and ts are flange and skin thicknesses; and Dfr and Dsr

are flange and skin bending stiffnesses in the direction of the diagonal

tension fold (i.e., about an inplane axis normal to the direction of the fold).

• Boundary Conditions (BC)at x = 0

Note that, because the interaction between the damped waves

emanating from the toe and heel is being neglected, boundary conditions at

the heel are unnecessary.

j_,_: Flange: M = 0 _ wf" = 0

._: Flange: V = 0 ==>

w;"= tf (1;)x=0-- tf NltoeK(. E Etfr t2 Oft 2-_fr tfr + _:tsr!

or

wf (_ztf Cn
KDfr

where

NltoeK2 / Etfr 1
Cn= 2_z _Etfr+ Etsrl

{5)

(6)

(7)

J__Q_: Skin: M = Mtoe =-Dsrws"

,, Mto e
==>w S =-

Dsr

J__Q.(._:Skin: V = Wtoe

(8)
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Wt_. _zts
wl! --==_Ws = _+--_----Cn

Dsr KDsr
(9)

• _wf

Inserting

1__ .... _ _1_t_f__,
Ws = Wf + (_z Dfrwf _z 2

from the DE for the flange (Eq. (3))into the DE for the skin

produces the following 8 thorder DE for wf:

where

(Eq. (4))

dSwf+4134d4w---!f=" _z2 IK4 1dx 8 dx 4 DfrDsrL_z tfDsr + tt + ts Cne "K× (1 0)

(Dfr + sr)-_-=r_z D 1
t (11)

Comolementarv Solution of DE !EQ.(10)) for wf

The solution of the homogeneous form of Eq. (10) is

w_c) = Ael3xcos (l_x) + Bel3xsin (13x) + Cel]xcos (_x) + Del]xsin (13x) * a + bx + cx2 + dx 3

as may be verified by back-substitution into the DE.

Simplification: As described in detail above, we assume that

the decaying waves emanating from the toe and heel die out rapidly,

see Figure 1, so that there is no interaction between them. Thus, the

first two terms in the above equation must vanish, and these

conditions are satisfied by taking

A:B=0

so that complementary solution for wf simplifies to

w_c) = Ce-13Xcos (13x) + Del_xsin (_x) ÷ a + bx + cx 2 + dx 3 (12)
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Particular Solution of DE (Ea,(10)) for wf

A particular solution of Eq. (10) is readily shown to be

wlP) f 1 )] %2 [K4tfDsr+tf+ts]Cne_K x= K4(K'+4134 DfrDsr (l)z

Let

= 1 *z2 [K4m

K4(K'+4_ ') OfrDsr (1)z
tf Dsr + tf + ts] (dimensions of length) (13)

W_ p) -mCn e-Kx

Total Solution. wf = Wf(c) + wf(P)

wf = Ce-l_Xcos (13x)+ De - 13Xsin(13x) ÷a + bx + cx 2 + dx 3 - mCne -K_

(14)

(15)

• ._Ws

From Eq. (3):

I1! !

Ws =wf+ l__Dfrwf --!-tf'c
_z _z 2

By using Eq. (15) to eliminate Wf, and Eq. (11)

expression, we obtain

to simplify the resulting

Ws =- Df--r-r [Ce I}xcos (13x) +De-I}x sin ( 13x] + a + bx + cx 2 + dx 3- nCne "KX
Dsr

(16)

where

n =(1 + K4 Dfr/-_-z ! m- tf
(17)

• Determine Arbitrary Constants From BC's at x -- 0

B..O..(._:Flange: M = 0 (Eq,(5))
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c = 132D+lm K2Cn
2 (1 8a)

J_C,_: Flange: V = 0 (Eq. (6))

D --- IVlt°e + (n- m)-I 'Dfr+D rlCn
2_2(Dfr+Dsr) 21121 Dsr !

(18b)

.B_._: Skin: M = Mtoe (Eq. (7))

d = -_3(C+D) ._-1 (_ ztf - mK3)C6 _KDfr n
(1 8c)

C

.1_: Skin: V = Wtoe (Eq. (8))

O_r
1 [lV_oe + __] + (Dfr+Dsr)

2_ 2 (D fr+Dsr)

• Peel Stress At Toe !x=0)

(n - m) Ka - 1] 2133K_Dfr- Osr//

(18d)

The peel stress at the toe is given by

GZ = (Gpeel)x=0 = (_z[Wf(0)-Ws(0)]

which from Eqs. (15) and (16) becomes

_3z = _z[/Dfr+Dsr./c] +(n- m) Cn
L_ Dsr ! J

By substituting for C from Eq. (18d)into this equation, and performing

some algebraic manipulation, we obtain the following expression for the

peel stress:

_Z -- "- "_"/2131_-_fr" tf// [1 K4Dfrm213 [Wtoe + 13Mtoe]+ e z,f_.,n K --- D-- "

Dfr /

where the dimensionless parameter

2_ 2

(19)
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m* ._r13

tf

has been introduced, and m is given by Eq. (13).

(20)

Oz can be conveniently subdivided into two parts: the first, (_zl, is

due directly to the moment Mtoe and the transverse shear Wtoe applied from

the skin; and the second, _z2, is caused by the shear along the interface

between the skin and flange acting at half the laminate thickness away

from the midplane of each laminate. The two parts of the peel stress are

given by

O'z ---(_zl + O'z2

where

and

and

2 _ (Wtoe + _ Mtoe)
Gzl =(1 + Dsr/Dfr)

Gz2 = Cn tf _z (F1 + F2)

F1 =(1- --+K2 K_3l(m" Dfr K42132
1)

(21)

(22)

2 _ Dfr ID sr/D.,fr-ts/tf1F2
K _ Dfr + Dsr !
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APPENDIX J

FOUNDATION MODUL!

Expressions for the interlaminar shear stress, "Cxz, and peel

stress, a z, between the skin and the attached flange are derived in
Appendices H and I, respectively. These expressions contain terms

involving two "foundation modulii" corresponding to "Cxz and a z. A
simple model is used in the present appendix to obtain closed-form

equations for these modulii. This is done by summing up the

flexibilities of the layers between the midplanes of the skin and
flange under the assumption that the stresses are uniform between

the midplanes. More complex derivations are not justified within
the framework of the overall simple approach adopted in this work.

J.1 Foundation Modulus CorresDondinq to PeeL.,.$tress

Figure 1 depicts a cross section of the attached flange and
skin. The cross section is in the diagonal tension direction, x, and is

in the plane normal to the skin. A peel stress, Gz, acts in the out-

of-plane direction, z, on a unit area. Under the above assumptions,
the extension of the midplane distance due to Gz can be written as:

It t t It
(_'z " (_z [_--(E33)flange + (E)adhesive + (E33)face + 21(E)core]

In this equation, t denotes laminate thickness, E is Young's modulus

for the isotropic adhesive and core materials, and E3 is the out-of-

plane modulus for the flange and skin layers. (By assuming

transverse isotropy for tape layers, we may take E3 = E2, where E2 is

the layer transverse modulus).

The foundation modulus corresponding to the peel stress

given by

_z 1

0Z: z
E3 lange adhesi e E3 face E ore

is

(1)
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J.2 FoundatiOn Modulus CorresDondino to Interlaminar Shear

Stress

The foundation modulus corresponding to the shear stress Cxz

is found simirarly. The displacement in the x direction of the skin

relative to the flange is

_t__ i_ _t__
5x = "Cxz[2_Geff)flange + (G)adhesive + (Geff)face + l?--(-t-)12G core/

In this equation, G denotes the usual shear modulus for the isotropic

adhesive and core materials, and, for the laminates
n

t/Geff = T, ti/G tti
i

where Gtti is a through-the-thickness shear modulus for the ith layer,

and the summation is over the number of layers n in the laminate. In

the case of tape layers, the values of Gtti depend on layer

orientation. However, the value of "Cxz is not overly sensitive to this

variation, and it is simplest to use G13 (subscript "1" pertains to

the fiber direction) for all tape layers regardless of orientation.

This simplification slightly overestimates the shear stiffness and

so overpredicts "Cxz. For fabric layers G13 = G12. Thus, for both tape

and fabric layers, we take Geff= G13.

The foundation modulus corresponding to the interlaminar

shear stress is

(_xz = _xz = 1 (2)
t

(_x 1--(_-.L- / + (_)adhesive + + 2--{G)core
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J.3 Sensitivity Results

The effect of increasing _z by 30% for the C1 panel (the most

significantly affected panel) is to increase the maximum principal

tensile stress at the toe, (_rnpt, (used to calculate failure, see

Appendix L) by only 1.3%. Increasing _xz for C1 by 30% increases

O'mpt by 5.4% The use of the simple formulae given above is

therefore justified.
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APPENDIX K

STRESS ANALYSIS OF THE CRITICAL PLY

The objective of this appendix is to determine the surface tension

stress at the toe, Ox, acting in the direction of the diagonal tension fold in
the "critical ply" of the skin. The critical ply is defined as follows: it is

on the stiffener side of the skin; it is put into tension along the diagonal

tension fold by the membrane load, the bending moment, and the
transverse shear force acting in the skin at the toe of the flange; and it's

fibers lie across the direction of the diagonal tension fold. Finally, to be
conservative, i.e., to obtain the highest possible value for Ox, we assume

that the critical ply is at the surface immediately under the toe of the
attached flange. The stress oxis determined from the strain components
derived next.

• Strains

We define a system of inplane axes (x, y) at the middle surface of

the skin with the x axis parallel to the direction of the diagonal tension

fold, and the y axis being normal to it. Therefore, the strain Ex in the
direction of the diagonal tension fold, on the surface of the skin, is the

strain normal to the fiber direction of the "critical" ply. The strain E:y

normal to the diagonal tension fold, in the plane of the skin, on the surface
of the skin, is the strain in the direction of the fiber of the "critical" ply.

The internal loads in the skin laminate near the toe are a tensile

stress resultant Nltoe in the x direction, a compressive stress resultant

N2toe in the y direction, a moment Mtoe about the y axis, and a transverse

shear force Wtoe (see Figure 1 of Appendix I). These loads cause

membrane strains ex and ey in the midplane of the skin laminate and

curvatures Kx and _:y. The surface strains in the x and y directions are

and

_x = ex + t_s_x (1)
2

E:y= ey + t.s l_y (2)
2

where ts is the skin thickness.
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From standard lamination theory [e.g., Grumman Advanced Composite
Structures Manual], and with the assumptions that

• the skin laminate is balanced and symmetric,

• the bending/twisting coupling terms are small, and

• the curvature 1¢y about the x axis is zero,

it is straight forward to show that curvature about the y axis is therefore

_x =Mtoe (3)
Dsr

The surface strains may then be written as

_x=_- vsr N_°_+ Mt__
Etsr Etsr Dsr 2

(4)

_y= Nytoe_VsrN_oe (5)
Etsr Etsr

In these equations, Nxtoe and Nytoe are the stress resultants in the skin
near the toe (see Figure 1 of Appendix B). The skin laminate properties

are relative to the diagonal tension axis system, with subscript "r"

pertaining to the "rotated" axis system (x, y), which makes an angle of 45 °
relative to the structural axis system. Etsr is the skin membrane

stiffness in the x direction, Dsr is the neutral axis bending stiffness of

the skin about the y axis, and Vsr is Poisson's ratio for the skin laminate.

(Vsr = Vxy is defined according to Vxy Ey = Vyx Ex, where Ex and Ey are

engineering constants for the skin laminate).

•Stress

The stress (_x in the critical ply, in the direction of the diagonal
tension fold, and therefore normal to the fiber direction, is related to the

above strains by

= E2 (Ex+ v12_y)
_x (1-v12v21)

(6)
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where El, E2, and V 1 2 are the in-plane Young's modulii and Poissons ratio

for the face ply of the skin. The subscript "1" when affixed to a material
property pertains to the fiber direction, and the Poisson's ratio v12 is

defined according to v12 E2 = v21 El.

Substituting Eqs. (4) and (5) into Eq. (6), and recalling that the

stress resultants in the skin at the toe are defined in Appendix C as

Nxtoe--Nltoe--q (i.e., Nxtoe is tensile, and q>0)

and

Nytoe =-N2toe = -q (i.e., Nytoe is compressive, and q>0),

we can write the equation for ax as

E2 {(1_v12) (1+Vsr) q +tsMtoe(_x = (1-v12v2 1) Etsr 2 Dsr
(7)
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APPENDIX L

FAILURE CRITERION

Previous appendices describe a method whereby the state of stress

in the critical ply under the toe of the stiffener flange may be rapidly, if

approximately, estimated. It remains to develop a failure criterion for
this ply in order to estimate the failing strength of the stiffened panel.

• Maximum PrinciDal Tensile Stress

The three stress components "Cxz, (_z and _x, derived in appendices H,

I and K respectively, are combined to give the following maximum
principal tensile stress in the surface ply immediately under the toe of

the attached flange:

(1)

• Failure Criterion

Examination of photomicrographs of ply cross sections shows that
for graphite/epoxy the placing of the fibers within such a section is

random, and it is impossible to discern the orientation of the
photographed section within the ply without other, external, clues. We

may therefore assume transverse isotropy, and that the tensile strength

at any orientation in the xz plane is equal to the transverse tensile

strength Ft2u of the layer, which can be more-or-less readily found from

coupon tests on a laminate consisting of all 90 ° plies.

Failure is assumed to occur when the maximum principal tensile

stress, from Eq. (1), in the critical layer in the skin immediately under the

toe reaches the transverse tensile strength Ft2u of the layer, i.e. when

O'mpt = (2)

Failure of this layer constitutes failure of the joint, because cracking of
the matrix allows the fibers to be pulled out of the skin surface. This

type of failure was observed on all of the panels tested.

The following values used in the analysis of the test panels are
based on statistical analysis of 19 coupon test results for transverse
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tension of IM6/3501-6 graphite/epoxy tape, in the room temperature,
ambient, moisture ("dry") condition [Shyprykevich, 1988]:

Ft2u = Mean strength = 7150 psi

Standard Deviation _- 1180 psi

"B-basis" allowable stress = 4460 psi

where the B-basis allowable strength is such that at least 90% of the
transverse tensile strengths are expected to exceed the B-basis allowable
value, with a confidence of 95%.
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APPENDIX M

THE SNAPPS CODE

A Preliminary Design Code for Predicting the
Nonlinear Response & Stiffener Separation of

Postbuckled, Flat, Composite Shear Panels with
Sandwich & Non-Sandwich Skins, Based on a

Simplified Analysis Method

The analysis methodology described previously in this report

is based on a number of modular "strength-of-materials-type"

models. These models are used to derive simple, closed-form

equations that can easily be used in a "hand analysis". For

expediency, they have been programmed into a preliminary design

code called SNAPPS using the True Basic language. Being such a

simple language, True Basic readily permits users to modify

SNAPPS to suit their individual needs such as, for instance, to echo

more input data or to provide more output. Alternatively, because

SNAPPS requires a minimum of input data, and consists of only a

relatively small number of executable statements (less than four

dozen) of coding of the equations, it should be an easy task for users

to program SNAPPS in another language or spreadsheeet (such as

MicroSoft Excel) of their choice.

The next portion of this appendix gives a listing of the True

Basic code. This listing also serves as a self-contained "User's

Guide" that has many annotations, along with cross-references to

other appendices for further details. Also provided is the input data

for three tested shear panels (A1, B1, C1), which are the sample

problems. These panels are described fully in Appendix A, and are

used in Section 3 to compare predicted and measured results.

SNAPPS output for the test panels are presented in the remaining

portions of the current appendix.
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!M.I SNAPPS Code Listing & "User'S Guide"
!

W

, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@ SNAPPS (Version 1.0, April 1997) @@

@@ (Speedy Nonlnear Analysis of Postbuckled Panels in Shear) @@
@@ BY DAVE SHARP & LARRY SOBEL @@

@@ 8@
@@ A SIMPLIFIED ANALYSIS, PRELIMINARY DESIGN CODE FOR RAPIDLY @@

@@ PREDICTING THE NONLINEAR RESPONSE & STIFFENER SEPARATION @@

@@ OF POSTBUCKLED, FLAT, COMPOSITE SHEAR PANELS WITH SANDWICH @@

@@ OR NON-SANDWICH SKINS @@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

!

**************************************************************

**************************** & DATA STATEMENTS **************

I**********FOR GETTING RESPONSES FOR DIFF VALUES of q *******

t The argument in the following dimension statements is the number

t of values of the shear flow, q. Response variables, such as stresses,

i are computed for each value of q. The argument can be one,

I if results for Just one value of q are desired.

DIM q(30), qratio(30), c(30),Lb(30), Delta(30), Mtoe(30), Wtoe(30)

DIM NI(30), Lambda(30), ThetaTierodDeg(30), DeltaThetaDeg(30)

DIM SIGzTOE(30), TAUxzTOE(30), SIGxTOE(30), SIGmptTOE(30), STRAINx(30),STRAINy(30)

DIM STRAINxM!CRO(30), STRAINyMICRO(30)
f

I

********************** IN VALUES OF SHEAR FLOW, q **********
**************************************************************

I

MAT READ q ! NOTE: q must always be positive (App. C)

!DATA 634,700,791.2,800,850,900,950, 1000, 1050, 1100,1149, 1200, 1300, 1403, 1500 !AI

!DATA 1550,1600,1650,1700,1750,1800,1850,1900,1950,2000,2050,2100,2150,2200,2250 !AI

!DATA 302,325,350,375,400,425,451.14,500,550,600, 650,700,735,750,800,838,850 !BI

!DATA 900,950,1000,1050,1100,1150,1200,1250,1300,1350,1400,1450,1500 !BI

DATA 63.5, 70, 75, 80, 85, 90, 95,100,150,200,250,300,350,400,467.8,500,550 !CI

DATA 600,650,700,750,800,850,900,950,962,1000,1050,1100,1199 !CI

1

**************************************************************

I******************* READ IN REST OF INPUT DATA **************
**************************************************************

f

!################################################################################
!# COMMENT ON AXIS NOTATION (App. C) #

!# The long (tension) direction of the diagonal tension (DT) fold is denoted #

!# by x, and the in-plane direction normal to the DT fold is denoted by y. #

!# Most input laminate stiffness properties are referred to the DT x axis. #

!# These properties are called "rotated" properties, and are subscripted #

!# by "r" to so designate them (rather than use double subscripts "xy"). #

!# For example, Dsr is the bending stiffness of the skin IN the DT #

!# direction (which is the x axis), or eqivalently, ABOUT the y axis. #
!################################################################################
I

READ qcr,btt,Lf
!

!

!

l

t

!

1

READ tf, ts,tc, ta

qcr=Initial buckling value of shear flow

qcr is always positive (see App. C).

btt=Tot-to-Toe Width of Skin, measured normal
to the direction of the stiffener

(See Figure 1 of App. D).

Lf=the heel-to-toe width of the attached flange,
measured normal to the stiffener direction.

(See Figure 1 of App. D).
r Thicknesses for flange, skin, core, & adhesive.

READ E3f, E3faceply,Ec,Ea ! Out-of-plane Young's Modulii for flange ply,

M-2



' face ply of skin, core, & adhesive.

' (E3 is in dir normal to plane of skin).

READ Gl3f, Gl3faceply, Gc,Ga ! Out-of-plane Shear Modulii for flange ply,

' face ply of skin, core, & adhesive.

' ("i" pertains to fiber direction).

READ Elfaceply, E2faceply,NUl2faceply
I

T

I

READ Gt, Et fr, Etsr, NUsr
!

T

!

!

!

r

!

T

T

!

READ Dfr, Dsr,Dtotr
T

!

I

!

!

!

!

| ...............

In-plane Young's Modulii and Poisson's Ratio for face

ply of skin (NUI2 defined according to NUI2E2=NU21EI.

Thus, if El>E2, then NUI2 is the major Poisson ratio).

Gt=Skin shear stiffness in the global, structural axis

system, x' ,y' (App. C). This system is

parallel and normal to the stiffener direction.

Etfr=rotated membrane stiffness of flange.

Etsr=rotated membrane stiffness of skin.

EA for a laminate is computed as follows:

• EA=(engineering constant for laminate)*

(laminate thickness)*(unit width)

NUsr= rotated Poisson's ratio relative to DT direction.

(NUsr=NUxy defined according to NUxyEy=NUyxEx).

Dfr=rotated bending stiffness of flange

about neutral axis.

Dsr=rotated bending stiffness of skin

about middle surface.

Dtotr=rotated bending stiffness of combined (total)

skin and flange laminates

about neutral axis of total stack.

!AI Data, qfailtrest = 1403, qpred=l149, qallow=791.2

[DATA 634, 9.5, 0.75 ! qcr,btt,Lf

[DATA 0.072,0.1172,0.050,0.008 T tf, ts,tc,ta

!DATA 1.60E6,1.30E6,0.38E6,0.30E6 t E3f,E3faceply, Ec, Ea

[DATA 0.64E6,0.80E6,0.15E6,0.12E6 ' Gl3f, Gl3faceply, Gc,Ga

!DATA 20.5E6,1.30E6,0.35 i Elfaceply,E2faceply, NUl2faceply

!DATA 0.2612E6,0.4658E6,0.6302E6,0.206 ! Gt,Etfr, Etsr,NUsr

!DATA 248.1,1215,4574 ! Dfr,Dsr, Dtotr

!BI Data, qfailtest = 838, qpred=735.0, qallow=451.14

!DATA 302, 9.5, 0.75 1 qcr,btt,Lf

!DATA 0.0576,0.0848,0.040,0.008 ' tf, ts,tc,ta

!DATA 1.60E6,1.30E6,0.38E6,0.30E6 t E3f, E3faceply,Ec,Ea

!DATA 0.64E6,0.80E6,0.15E6,0.12E6 T Gl3f, Gl3faceply, Gc, Ga

!DATA 20.5E6,1.30E6,0.35 _ Elfaceply,E2faceply,NUl2faceply

!DATA 0.1418E6,0.4080E6,0.3702E6,0.305 ! Gt,Etfr, Etsr,NUs

!DATA 132.5,479.9, 1961 v Dfr,Dsr,Dtotr

!CI Data, qfailtest= 962, qpred= 1199, qallow=467.8

DATA 63.5, 15.5, 0.75

DATA 0.0432, 0.0648,0.020,0.008

DATA 1.60E6,1.30E6,0.38E6,0.30E6

DATA 0.64E6,0.80E6,0.15E6,0.12E6

DATA 20.5E6,1.30E6,0.35

DATA 0.1388E6,0.3454E6,0.3626E6,0.306

DATA 58.5,249, 1038
!

! qcr,btt, Lf

l tf, tS, tc,ta

v E3f,E3faceply,Ec, Ea

i GI3 f, GI3 faceply, Gc, Ga

! E1 faceply, E2faceply, NUl2faceply

! Gt, Et fr, Etsr, NUsr

! Dfr,Dsr, Dtotr

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

"&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&"

"&&&&&&&&&&&&&&&& SNAPPS ANALYSIS OF PANEL C1 &&&&&&&&&&&&&&&"

"&&&&&&&&&&&&&&&& (Version 1.0, April 1997) &&&&&&&&&&&&&&&"

"&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&"

PRINT ******************************************************

PRINT "************* ECHO SELECTED INPUT **************"

PRINT *****************************************************

PRINT

PRINT "Initial Buckling Shear Flow, qcr ";qcr;"ib/in."

PRINT "Toe-to-Toe Width of Skin, btt ";btt;"in."

PRINT "Flange Width (normal to stiff dir.), Lf ";Lf;"in."

PRINT "Thickness of Flange, tf ";tf;"in."
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PRINT "Thickness of Skin, ts ";ts;"in."

PRINT "Thickness of Core, tc ";tc;"in."

PRINT "Thickness of Adhesive, ta ";ta;"in."

PRINT "Shear Stiff of Skin relative to global axes, Gt";Gt;"ib"

PRINT "Memb Stiff of Flange in dir of DT fold, Etfr ";Etfr;"Ib"

PRINT "Memb Stiff of Skin in dir of DT fold, Etsr ";Etsr;"Ib"

PRINT "Bend Stiff of Flange in dir of DT fold, Dfr ";Dfr;"ib-in."

PRINT "Bend Stiff of Skin in dir of DT fold, Dsr ";Dsr;"ib-in."

PRINT

!

LET cosdt = I/sqr(2)
LET L = btt/cosdt
!

LET Lfr w Lf/cosdt
!

!

! Assumed angle of diagonal tension is 453

! L = toe-to-toe length of buckle in direction of

diagonal tension fold.

' Lfr is width of flange in direction of

diagonal tension fold.

' The upper range for the index i in the following "DO" LOOP must be the same as

! the DIMENSION statement for q. The upper range can be one,

! if results for just one value of q are desired (change

! DIMENSION & MATRIX DATA statements accordingly).

, #######################################################
t # CHANGE UPPER RANGE OF INDEX FOR i #

i # TO MAKE IT EQUAL TO THE NUMBER OF q VALUES #
, #######################################################
r I

FOR i =I to 30 step 1 ' I

' I I
' I I
!

! ******************** STRESS RESULTANTS NI, N2, (App. C)**************************
I

LET qratio(i) = q(i)/qcr ! Computed for printout only

LET Nl(i) = 2*q(i)-qcr [ N1 is the diagonal tension pull in the direction of
' the DT fold.

LET N2 - qcr ! N2 is the compressive resultant normal to the fold.

! Recall that qcr is always positive. Thus, N2 is positive

' when it is in compression.
!

t ******** WAVEWIDTH c & WAVELENTH Lb, (App. D); Max Disp, Deita (App. E)*********
!

LET c(i) = sqr(l.5)*L*sqr(N2/Nl(i))/(l+sqr(N2/Nl(i))) ! c is width of DT fold.

LET Lb(i) m c(i)/cosdt ' Lb is axial wavelength, computed for printout.

LET Delta(i) = (2/pi)*sqr(c(i)*L*(q(i)/Gt-qcr/Gt)) [ Max out-of-plane disp.

! ****BENDING MOMENT Mtoe, & TRANSVERSE SHEAR FORCE AT TOE, Wtoe (App. G)********

LET Lambda(i) = sqr(Nl(i)/Dsr)

LET ztotr = (Etfr*(ts+ta+tf/2) + Etsr*ts/2)/(Etfr+Etsr)

' ztotr is distance of neutral axis of skin + flange model

' from skin outer face (skin side of panel).

LET z = ztotr - ts/2

v z is "eccentricity" distance from middle surface of skin to

t neutral axis of skin + flange model.

LET NUM = (pi*Delta(i)/L)*((Nl(i)*Lfr^2)/(2*Dtotr)-l.0)-(q(i)*Lfr*z)/Dtotr

LET DEN = Lambda(i)/Nl(i) + Lfr/Dtotr + pi/(Nl(i)*L)*((Nl(i)*Lfr^2)/(2*Dtotr)-l.0)

LET Mbar = NUM/DEN ! moment on tierod at toe

LET Wtoe(i)= (pi/L)*(Nl(i)*Delta(i)-Mbar)

LET Mtoe(i) _ -Mbar
I

t ********************* ROTATION AT TOE, Theta (for printout), (App. G) ***********
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!

LET ThetaFlangeRad = -(Mbar+q(i)*z)*Lfr/Dtotr+(Wtoe(i)*Lfr^2) /(2*Dtotr)
LET ThetaTierodRad = (Lambda (i) *Mbar)/NI (i) +Wtoe (i)/NI (i)

LET ThetaFlangeDeg = (180/pi)*ThetaFlangeRad

LET ThetaTierodDeg(i) m (180/pi)*ThetaTierodRad

LET DeltaThetaDeg(i) = ThetaFlangeDeg - ThetaTierodDeg(i) ! check on compatibility
!

e ***************** INTERLAMINAR SHEAR STRESS AT TOE, TAUxzTOE (App. H) **************
!

LET tface=0.5*(ts-tc) ! Thickness of face sheet. (This equation applies to
v laminates without a core in which case

v the "face" thickness is half the skin thickness).

LET Phixz=i/[0.5* (tf/Gl3f) + (ta/Ga) + (t face/Gl3faceply) +0.5* (tc/Gc) ]

' Phixz is foundation modulus corresponding to shear stress (App. J).

LET K = sqr(Phixz*(I/Etfr+I/Etsr))

LET TAUxzTOE(i) = q(i)*K*Etfr/(Etfr+Etsr) !In DT axex.
!

! ********************* PEEL STRESS AT TOE, SIGzTOE (App. I) ***********************
l

LET Phiz=i/[0.5*(tf/E3f)+(ta/Ea)+(tface/E3faceply)+0.5*(tc/Ec)]

' Phiz is foundation modulus corresponding to Peel Stress (App. J)
LET Beta = (Phiz*(Dsr+Dfr)/4/Dsr/Dfr)^0.25

LET SIGzl = 2*Beta*(Wtoe(i)+Beta*Mtoe(i))/(l+Dsr/Dfr)

v SIGzl = Peel Stress due to Mtoe & Wtoe

LET Cn = q(i)*K^2*Etfr/2/Phiz/(Etsr+Etfr)
LET mstar = (Phiz/Dsr/Dfr/K^4)*(Dsr*K^4+Phiz*(l+ts/tf))/(K^4+4*Beta^4)

LET F1 = (l-K^2/2/Beta^2+K^3/2/Beta^3)*(mstar*K^4*Dfr/Phiz-l)

LET F2 _ 2*Beta*Dfr*(Dsr/Dfr-ts/tf)/K/(Dfr+Dsr)

LET SIGz2 = Cn*tf*Phiz*(Fl+F2) ! Peel Stress due to shear stress.

LET SIGzTOE(i) = SIGzl + SIGz2 ' Total Peel Stress.
!

v ********* STRAINS AT TOE IN CRITICAL PLY, STRAINx, STRAINx (App. K) *************
!

! In what follows, (I) the x axis is in the direction of the DT fold, (2) the

' in-plane y axis is in the direction normal to the direction of the DT fold,

! and (3) the CRITICAL PLY is defined as follows: its fibers are normal to the

! direction of the DT fold, it is the outermost skin ply on the stiffener side

! of the skin, and it is conservatively assumed to be at the surface of the skin.
LET STRAINx(i) = q(i)/Etsr-NUsr*(-q(i))/Etsr+(Mtoe(i))*ts/2/Dsr

! STRAINx is the tension strain in the critical ply.

! It is in the direction of the DT fold,
! and is normal to the fiber direction.

LET STRAINy(i) = -q(i)/Etsr-q(i)*NUsr/Etsr

I STRAINy is the comp strain in the critical ply.

! It is in the direction normal to the DT fold,
! and it is in the fiber direction.

LET STRAINxMICRO(i)=STRAINx(i)*I.0E6 !in units of microstrain for printout

LET STRAINyMICRO(i)=STRAINy(i)*I.0E6 !in units of microstrain for printout
!

! *************** TENSION STRESS AT TOE IN CRITICAL PLY, SIGxTOE (App. K)***********
!

LET NU21faceply = NUl2faceply*(E2faceply/Elfaceply)

LET Q22faceply = E2faceply/(l-NUl2faceply*NU21faceply)
LET SIGxTOE(i) = Q22faceply*STRAINx(i)+NU12faceply*Q22faceply*STRAINy(i)

' SIGxTOE is the tension stress in the critical ply.

' It is in the direction of the DT fold,
' and is normal to the fiber direction.
!

! **************** MAX PRIN TENSION STRESS AT TOE, SIGmptTOE (App. L)***************
!

LET SIGmptTOEl= (SIGzTOE (i) +SIGxTOE (i))/2

LET SIGmptTOE2=SQR ( ( (SIGzTOE (i)-SIGxTOE (i)) /2) ^2+TAUxzTOE (i) ^2)

LET SIGmptTOE(i)=SIGmptTOEI+ SIGmptTOE2

! SIGmptTOE is the max prin tension stress at the toe of the flange.

! It acts in a plane in the DT direction that is normal to the skin.
!

!

NEXT i

M-5



!

| ****************9%********************************************

r******************* PRINT OUTPUT RESULTS ********************
r*************************************************************

!

Note the following output variables (and others not shown) do not depend on q.

' Hence, for maximum efficiency they could have been computed outside the

DO loop on the q values. However, this was not done because (I) we prefer to

' compute them in the analysis sections where they belong, and (2) the code

f runs very fast, so it really doesn't matter.

PRINT
PRINT *****************************************************

PRINT "******* SELECTED SCALAR OUTPUT RESULTS ********"

PRINT "******* (Quantities That Don't Vary with q)*******"

PRINT ******************************************************

PRINT
PRINT "Toe-to-toe Length of Diagonal Tension Fold ";L;"in."

PRINT "Thickness of Face ";tface;"in."

PRINT "Thru-Thickness Foundation Modulus ";Phiz;"ib/sq in./in."
PRINT "Interlaminar Shear Foundation Modulus "; Phixz ; "ib/sq in./in."

PRINT "Beta, Die-away Rate for Flatwise Tensile Stress";Beta;"i/in."

PRINT "K, Parameter in Kuhn Shear-lag Analysis ";K;"i/in."

PRINT

PRINT

PRINT ****************************************************
PRINT "******* SELECTED MATRIX OUTPUT RESULTS ********"

PRINT "******* (Quantities That Vary with q) ********"

PRINT *****************************************************

PRINT

PRINT

PRINT "Applied Shear Flow, q, ib/in."
PRINT " .... .... "

MAT PRINT q
PRINT "Ratio of Applied Shear Flow to its Critical Value, q/qcr"
PRINT "-- -"

MAT PRINT qratio
PRINT "Transverse Width of Buckle, c, in."

PRINT "---- "-"

MAT PRINT c

PRINT "Buckle Wavelength (projected along stiffener), Lb, in."
PRINT "--- "-"

MAT PRINT Lb

PRINT "Maximum Out-of-Plane Displacement of Skin, Delta, in."

PRINT "- -"

MAT PRINT Delta
PRINT "Axial Load in Tie-Rod model,Nl,lb/in."

PRINT "- -"

MAT PRINT N1

PRINT "Lambda, Wave Number in Tie-Rod Analysis, 1/in."

PRINT " .... '......

MAT PRINT Lambda
PRINT "Skin Bending Moment at Toe, Mtoe, in.-ib/in."

PRINT "-- "......

MAT PRINT Mtoe
PRINT "Transverse Shear Force in Skin at Toe, Wtoe, ib/in."

PRINT " ...... '

MAT PRINT Wtoe

PRINT "Rotation at End of Tie-rod Model, ThetaTierodDeg, deg."

PRINT "--

MAT PRINT ThetaTierodDeg

PRINT "Compat. Check: Tie-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg."

PRINT " ....

MAT PRINT DeltaThetaDeg

PRINT " In-plane Tens Strain in Critical Ply, STRAINx, micro in."
.... ,I

PRINT " ......

MAT PRINT STRAINXMICRO

PRINT " In-plane Comp Strain in Critical Ply, STRAINy, micro in."

PRINT " ....

MAT PRINT STRAINyMICRO
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PRINT "In-plane Tens Stress in Critical Ply, SIGxTOE, ib/sq in."
PRINT " ........................ '

MAT PRINT SIGxTOE

PRINT "Peel Stress at Toe, SIGzTOE, ib/sq in."
PRINT "................... "

MAT PRINT SIGzTOE

PRINT "Shear Lag Stress at Toe, TAUxzTOE, ib/sq in."
PRINT " -"

MAT PRINT TAUxzTOE

PRINT "Maximum Principal Tensile Stress Under Toe, SIGmptTOE, ib/sq in."
PRINT " ..... "

MAT PRINT SIGmptTOE
| .........................

END
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M.2 SNAPPS Output for Panel A1

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& SNAPPS ANALYSIS OF PANEL A1 &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& (Version 1.0, April 1997) &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&_&&&&&&&&&&&

Initial Buckling Shear Flow, qcr

Toe-to-Toe Width of Skin, btt

Flange Width (normal to stiff dir.), Lf

Thickness of Flange, tf

Thickness of Skin, ts

Thickness of Core, tc

Thickness of Adhesive, ta

634 ib/in.

9.5 in.

.75 in.

.072 in.

.1172 in.

.05 in.

.008 in.

Shear Stiff of Skin relative to global axes, Gt 261200 ib

Memb Stiff of Flange in dir of DT fold, Etfr 465800 ib

Memb Stiff of Skin in dir of DT fold, Etsr 630200 Ib

Bend Stiff of Flange in dir of DT fold, Dfr 248.1 ib-in.

Bend Stiff of Skin in dir of DT fold, Dsr 1215 ib-in.

******* SELECTED SCALAR OUTPUT RESULTS ********

******* (Quantities That Don't Vary with q)*******
**************************************************

Toe-to-toe Length of Diagonal Tension Fold 13.435 in.
Thickness of Face .0336 in.

Thru-Thickness Foundation Modulus 7.10216e+6 ib/sq in./in.

Interlaminar Shear Foundation Modulus 3.01583e+6 ib/sq in./in.

Beta, Die-away Rate for Flatwise Tensile Stress 9.63497 1/in.

K, Parameter in Kuhn Shear-lag Analysis 3.3556 1/in.

Applied Shear Flow, q, Ib/in.

634 700 791.2 800 850

900 950 i000 1050 II00

1149 1200 1300 1403 1500

1550 1600 1650 1700 1750

1800 1850 1900 1950 2000

2050 2100 2150 2200 2250

Ratio of Applied Shear Flow to its Critical Value, q/qcr

1 1.1041 1.24795 1.26183 1.34069

1.41956 1.49842 1.57729 1.65615 1.73502

1.8123 1.89274 2.05047 2.21293 2.36593

2.44479 2.52366 2.60252 2.68139 2.76025

2.83912 2.91798 2.99685 3.07571 3.15457

3.23344 3.3123 3.39117 3.47003 3.5489

Transverse Width of Buckle, c, in.
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8.22724 7.83852 7.4017

6.98366 6.81882 6.66755
6.28018 6.16509 5.95972

5.53612 5.46335 5.39381

5.2023 5.1435 5.08693
4.92924 4.88028 4.83295

7 36427

6 52794

5 77166
5 32727

5 03245

4 78714

Buckle Wavelength (projected along stiffener), Lb, in.

7.16445

6.39846

5.61241

5.2635
4.97993

4.74279

11.6351 11.0853 10.4676 10.4147 10.1321

9.87639 9.64327 9.42933 9.23189 9.04878

8.88152 8.71875 8.42831 8.16236 7.93715
7.82926 7.72634 7.628 7.5339 7.44371

7.35717 7.27401 7.19401 7.11696 7.04269

6.971 6.90176 6.83482 6.77004 6.70731

Maximum Out-of-Plane Displacement of Skin, Delta, in.

103849
211939

269706

331689

361085
386191

155742

225547
287649

337993

366402

390812

159636

237929

304177
344068

371561

395318

0

.196786

.259659

.325135

.355599

.381447

Axial Load in Tie-Rod model,Nl,lb/in.

17961

249312

318307

349931
376574

399715

634 766 948.4 966 1066

1166 1266 1366 1466 1566
1664 1766 1966 2172 2366

2466 2566 2666 2766 2866

2966 3066 3166 3266 3366

3466 3566 3666 3766 3866

Lambda, Wave Number in Tie-Rod Analysis, I/in.

.722365 .794011 .883502 .891662 .936678

.979628 1.02077 1.06032 1.09845 1.13529
1.17028 1.20561 1.27205 1.33703 1.39547

1.42465 1.45325 1.4813 1.50882 1.53585

1.56242 1.58854 1.61424 1.63953 1.66444

1.68899 1.71318 1.73703 1.76056 1.78379

Skin Bending Moment at Toe, Mtoe, in.-ib/in.

6.21677 29.3103 42.4791 43.5241 49.0105

53.893 58.3166 62.3698 66.112 69.5855

72.7592 75.8452 81.3274 86.2848 90.3948
92.3213 94.126 95.8145 97.392 98.8631

100.232 101.503 102.678 103.763 104.759
105.669 106.496 107.242 107.91 108.502

Transverse Shear Force in Skin at Toe, Wtoe, ib/in.

1.4537 25.455 44.472 46.237 56.2317

66.2565 76.3782 86.6284 97.0223 107.566

118.048 129.112 151.256 174.665 197.243
209.074 221.031 233.112 245.313 257.632

270.066 282.611 295.266 308.028 320.894

333.863 346.932 360.098 373.361 386.718

Rotation at End of Tie-rod Model, ThetaTierodDeg, deg.

-.274466 .163239 .419363 .440586 .554935
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.661474 .762598 .859706 .953696 1.04517

1.1328 1.22222 1.39315 1.56429 1.72178

1.80177 1.88103 1.95962 2.03759 2.11497

2.1918 2.26811 2.34393 2.41929 2.49421

2.56871 2.64282 2.71654 2.7899 2.86291

Compat. Check: Tie-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg.

0 -I.II022e-16 I.II022e-16

2.22045e-16 -6.66134e-16 4.44089e-16

-4.44089e-16 4.44089e-16 4.44089e-16

8.88178e-16 6.66134e-16 4.44089e-16

8.88178e-16 0 0

-8.88178e-16 -4.44089e-16 0

I.ii022e-16

5.55112e-16

-2.22045e-16

4.44089e-16

0

-4.44089e-16

-2.22045e-16

-8.88178e-16

-6.66134e-16

-8.88178e-16

4.44089e-16

4.44089e-16

In-plane Tens Strain in Critical Ply, STRAINx, micro in.

1513.11 2753.22 3562.89 3630.13

4321.6 4630.63 4921.8 5197.97

5708.03 5954.46 6410.24 6846.45

7418.9 7601.63 7778.75 7950.51

8278.86 8435.82 8588.22 8736.2

9019.5 9155.07 9286.76 9414.66

3990.42

5461.19

7230.3

8117.15

8879.92

9538.88

In-plane Comp Strain in Critical Ply, STRAINy, micro in.

-1213.27

-1722.31

-2198.82

-2966.2

-3444.62

-3923.04

-1339 57

-1817 99

-2296 41

-3061 89

-3540 3

-4018 72

In-plane Tens Stress in Critical

-1514.1 -1530.94 -1626.63

-1913.68 -2009.36 -2105.05

-2487.78 -2684.89 -2870.52

-3157.57 -3253.25 -3348.94

-3635.99 -3731.67 -3827.36

-4114.41 -4210.09 -4305.78

Ply, SIGxTOE, ib/sq in.

1426.08 2992.93

4872.27 5233.28

6470.24 6748.36

8359.89 8555.42

9267.2 9428.98

10018.2 10151.9

3973.71 4054.08 4482.25

5570.89 5888.85 6189.83

7257.75 7738.87 8156.67

8743.6 8924.77 9099.21

9584.77 9734.77 9879.19

10280.6 10404.3 10523.2

Peel Stress at Toe, SIGzTOE, ib/sq in.

490.27 1325.93 1844.36 1887.05 2115.29

2324.62 2519.82 2703.78 2878.42 3045.08

3201.65 3358.27 3648.93 3928.59 4176.1

4298.26 4417.01 4532.5 4644.89 4754.31

4860.89 4964.74 5065.97 5164.67 5260.92

5354.8 5446.4 5535.78 5623. 5708.13

Shear Lag Stress at Toe, TAUxzTOE, ib/sq in.

904.166 998.291 1128.35 1140.9 1212.21

1283.52 1354.82 1426.13 1497.44 1568.74

1638.62 1711.36 1853.97 2000.86 2139.19

2210.5 2281.81 2353.11 2424.42 2495.73

2567.03 2638.34 2709.65 2780.95 2852.26

2923.57 2994.87 3066.18 3137.48 3208.79

Maximum Principal Tensile Stress Under Toe, SIGmptTOE, ib/sq in.

1976.24 3459.93 4460.39 4543.99 4992.9

5406.77 5793.91 6159.45 6506.84 6838.56

7150.25 7462.03 8040.44 8596.52 9088.26
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9330.83

10446.9

11426.

9566.51

10652.8

11607.7

9795.66

10853.4

11785.

10018.6

11049.

11958.1

10235.6

11239.9

12127.2
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M.3 SNAPPS Output for Panel B1

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& SNAPPS ANALYSIS OF PANEL B1 &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& (Version 1.0, April 1997) &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Initial Buckling Shear Flow, qcr

Toe-to-Toe Width of Skin, btt

Flange Width (normal to stiff dir.), Lf

Thickness of Flange, tf

Thickness of Skin, ts

Thickness of Core, tc

Thickness of Adhesive, ta

302 ib/in.

9.5 in.

.75 in.

.0576 in.

.0848 in.

.04 in.

.008 in.

Shear Stiff of Skin relative to global axes, Gt 141800 ib

Memb Stiff of Flange in dir of DT fold, Etfr 408000 Ib

Memb Stiff of Skin in dir of DT fold, Etsr 370200 ib

Bend Stiff of Flange in dir of DT fold, Dfr 132.5 ib-in.

Bend Stiff of Skin in dir of DT fold, Dsr 479.9 ib-in.

Toe-to-toe Length of Diagonal Tension Fold 13.435 in.
Thickness of Face .0224 in.

Thru-Thickness Foundation Modulus 8.73141e+6 ib/sq in./in.

Interlaminar Shear Foundation Modulus 3.663e+6 ib/sq in./in.

Beta, Die-away Rate for Flatwise Tensile Stress 12.0413 1/in.

K, Parameter in Kuhn Shear-lag Analysis 4.34426 1/in.

Applied Shear Flow, q, ib/in.

302 325 350 375 400

425 451.14 500 550 600

650 700 735 750 800

838 850 900 950 i000

1050 1100 1150 1200 1250

1300 1350 1400 1450 1500

Ratio of Applied Shear Flow to its Critical Value, q/qcr

1

1.40728

2.15232

2.77483

3.47682

4.30464

1 07616

i 49384

2 31788

2 81457

3 64238

4 4702

1 15894

1 65563

2 43377

2 98013

3 80795

4 63576

Transverse Width of Buckle, c, in.

1.24172

1.82119

2.48344

3.1457

3.97351

4.80132

M-12

1.3245

1.98675

2.64901

3.31126

4.13907

4.96689



8.22724 7.93576 7.66041 7.41872
7.01068 6.82801 6.52883 6.26708
5.83934 5.66075 5.54656 5.50004
5.252 5.22109 5.09874 4.98575
4.78327 4.69197 4.60634 4.52578
4.37795 4.30986 4.24519 4.18367

Buckle Wavelength (projected along stiffener), Lb, in.

7 20381
6 0397
5 35425
4 88092
4 4498
4 12502

11.6351 11.2229 10.8335 10.4917 10.1877
9.9146 9.65626 9.23315 8.86299 8.54143
8.25808 8.00551 7.84402 7.77823 7.57205
7.42745 7.38373 7.21071 7.05092 6.90266
6.76456 6.63545 6.51435 6.40042 6.29297
6.19136 6.09506 6.00361 5.9166 5.83367

MaximumOut-of-Plane Displacement of Skin, Delta, in.

118825
222798
303681
342171
387291
423069

.144207

.244298

.307598

.35222

.395045

.429448

0 8.37181e-2

.181968 .197745

.27934 .29413

.32878 .331461

.370659 .379176

.409602 .41646

Axial Load in Tie-Rod model,Nl,lb/in.

.164648

.262892

.319982

.361693

.402472

.435615

302 348 398 448 498

548 600.28 698 798 898

998 1098 1168 1198 1298

1374 1398 1498 1598 1698

1798 1898 1998 2098 2198

2298 2398 2498 2598 2698

Lambda, Wave Number in Tie-Rod Analysis, i/in.

.793283 .851558 .910681 .966192 1.01868

1.0686 1.11841 1.20601 1.28951 1.36793

1.44208 1.51261 1.56008 1.57999 1.64461

1.69207 1.70678 1.76677 1.82479 1.88102

1.93562 1.98872 2.04043 2.09087 2.14012

2.18826 2.23537 2.2815 2.32672 2.37108

Skin Bending Moment at Toe, Mtoe, in.-Ib/in.

2.7567 10.4579 14.0668 16.8592 19.2241

21.3055 23.2567 26.4384 29.2109 31.5974

33.6624 35.4497 36.553 36.9913 38.3118

39.1797 39.4308 40.364 41.1247 41.7243

42.1723 42.4772 42.6464 42.6866 42.6035

42.4026 42.0887 41.6661 41.1389 40.5107

Transverse Shear Force in Skin at Toe, Wtoe, ib/in.

.644616 9.25799 14.348 19.0492 23.6685

28.2997 33.1951 42.5468 52.4168 62.5919

73.0605 83.8079 91.4888 94.8189 106.079

114.796 117.576 129.296 141.23 153.368

165.7 178.219 190.916 203.786 216.821

230.017 243.367 256.867 270.512 284.298

Rotation at End of Tie-rod Model, ThetaTierodDeg, deg.

-.292593 5.80309e-2 .221353 .352984 .470019
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.578464

1.40751

2.02249

2.67903

3.42151

Compat. Check:

.685752 .875172 1.05896 1.23581

1.57519 1.69058 1.73959 1.90124

2.06052 2.21772 2.37309 2.52681

2.82988 2.97947 3.12788 3.27521

3.56685 3.71128 3.85486 3.99762

Tie-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg.

-I

1

2

-4

-i

-4

II022e-16 -6.45317e-16 -1.38778e-16

ii022e-16 -3.33067e-16 -8.88178e-16

22045e-16 -4.44089e-16 0

44089e-16 0 0

33227e-15 0 8.88178e-16

44089e-16 -8.88178e-16 8.88178e-16

-3.88578e-16 -6.10623e-16

-6.66134e-16 6.66134e-16

2.22045e-16 8.88178e-16

4.44089e-16 4.44089e-16

0 0

0 0

In-plane Tens Strain in Critical Ply, STRAINx, micro in.

1308.15 2069

3380.55 3645

5265.46 5599

6415.65 6480

7427.37 7630

8329. 8477

64 2476

1 4098

63 5820

13 6738

57 7821

52 8616

62 2811

44 4519

49 5912

84 6982

77 8001

44 8746

46

65

09

31

58

12

In-plane Comp Strain in Critical Ply, STRAINy, micro in

-1064.59 -1145.66 -1233.79 -1321.92

-1498.18 -1590.32 -1762.56 -1938.82

-2291.33 -2467.59 -2590.96 -2643.84

-2954.05 -2996.35 -3172.61 -3348.87

-3701.38 -3877.63 -4053.89 -4230.15

-4582.66 -4758.91 -4935.17 -5111.43

In-plane Tens Stress in Critical Ply, SIGxTOE, lb/sq in.

1225.72 2186.24 2679.04 3077.33

3742.12 4046.46 4561.44 5032.48

5847.97 6204.96 6437.76 6533.52

7051.02 7116.11 7374.24 7612.4

8033.86 8219.26 8388.95 8543.7

8811.04 8924.81 9025.99 9115.06

Peel Stress at Toe, SIGzTOE, ib/sq in.

3108.53

4906.76

6205.02

7211.53

8170.5

8866.87

-1410.05

-2115.07

-2820.1

-3525.12

-4406.4

-5287.68

3426.13

5458.84

6836.48

7831.9

8684.2

9192.45

360.01 902.069 1170.22 1385.13 1572.78

1742.71 1906.54 2184.61 2440.4 2673.57

2888.09 3086.64 3217.17 3271.15 3443.09

3566.07 3603.6 3753.64 3893.97 4025.24

4148.01 4262.79 4369.98 4469.97 4563.09

4649.66 4729.93 4804.17 4872.61 4935.44

Shear Lag Stress at Toe, TAUxzTOE, ib/sq in.

687.847 740.233 797.174 854.115 911.056

967.997 1027.53 1138.82 1252.7 1366.58

1480.47 1594.35 1674.06 1708.23 1822.11

1908.66 1935.99 2049.88 2163.76 2277.64

2391.52 2505.4 2619.29 2733.17 2847.05

2960.93 3074.81 3188.69 3302.58 3416.46

Maximum Principal Tensile Stress Under Toe, SIGmptTOE, ib/sq in.

1605.58 2524.06 3022.18 3433.48 3798.98

4133.97 4459.96 5019. 5538.93 6017.35

_ 6461.36 6875.81 7150.29 7264.29 7629.54
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7892.96

9172.23
10349.2

7973.76

9433.28
10549.4

8298.75
9680.78

10739.2

8605.99
9915.51

10919.

8896.79
10138.1

11089.2
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M.4 SNAPPS Output for Panel C1

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& SNAPPS ANALYSIS OF PANEL C1 &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&& (Version 1.0, April 1997) &&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Initial Buckling Shear Flow, qcr

Toe-to-Toe Width of Skin, btt

Flange Width (normal to stiff dir.), Lf

Thickness of Flange, tf

Thickness of Skin, ts

Thickness of Core, tc

Thickness of Adhesive, ta

63.5 ib/in.

15.5 in.

.75 in.

.0432 in.

.0648 in.

.02 in.

.008 in.

Shear Stiff of Skin relative to global axes, Gt 138800 ib

Memb Stiff of Flange in dir of DT fold, Etfr 345400 ib

Memb Stiff of Skin in dir of DT fold, Etsr 362600 ib

Bend Stiff of Flange in dir of DT fold, Dfr 58.5 ib-in.

Bend Stiff of Skin in dir of DT fold, Dsr 249 ib-in.

**************************************************

******* SELECTED SCALAR OUTPUT RESULTS ********

******* (Quantities That Don't Vary with q)*******

Toe-to-toe Length of Diagonal Tension Fold 21.9203 in.
Thickness of Face .0224 in.

Thru-Thickness Foundation Modulus 1.19455e+7 ib/sq in./in.

Interlaminar Shear Foundation Modulus 5.12601e+6 ib/sq in./in.

Beta, Die-away Rate for Flatwise Tensile Stress 15.8456 1/in.

K, Parameter in Kuhn Shear-lag Analysis 5.38309 1/in.

Applied Shear Flow, q, Ib/in.

63.5 70 75 80 85

90 95 I00 150 200

250 300 350 400 467.8

500 550 600 650 700

750 800 850 900 950

962 1000 1050 Ii00 1199

Ratio of Applied Shear Flow to its Critical Value, q/qcr

1 1.10236 1.1811 1.25984 1.33858

1.41732 1.49606 1.5748 2.3622 3.14961

3.93701 4.72441 5.51181 6.29921 7.36693

7.87402 8.66142 9.44882 10.2362 11.0236

11.811 12.5984 13.3858 14.1732 14.9606

15.1496 15.748 16.5354 17.3228 18.8819

Transverse Width of Buckle, c, in.
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13.4234 12.7988 12.3881 12.0241 11.6977

11.4024 11.1332 10.8861 9.16312 8.13046

7.41248 6.87201 6.44424 6.09372 5.70489

5.54649 5.32658 5.13268 4.95991 4.8046

4.66393 4.53567 4.41808 4.3097 4.20938

4.18639 4.11614 4.02916 3.94777 3.80088

Buckle Wavelength (projected along stiffener), Lb, in.

18.9835 18.1003 17.5195 17.0046 16.543

16.1254 15.7447 15.3953 12.9586 11.4982

10.4828 9.71849 9.11354 8.61783 8.06794

7.84393 7.53292 7.2587 7.01437 6.79473

6.59579 6.41441 6.2481 6.09484 5.95296

5.92045 5.8211 5.6981 5.58299 5.37525

Maximum Out-of-Plane Displacement of Skin, Delta, in.

0 .072971 9.54906e-2 .112688

.139069 .149821 .159475 .225236

.297461 .322527 .343761 .362279

.39365 .407263 .419822 .431499

.452694 .462398 .471601 .480358

.490668 .496715 .504388 .511764

Axial Load in Tie-Rod model,Nl,lb/in.

126875

266522

384224

442422

488717

525587

63.5 76.5 86.5 96.5 106.5

116.5 126.5 136.5 236.5 336.5

436.5 536.5 636.5 736.5 872.1

936.5 1036.5 1136.5 1236.5 1336.5

1436.5 1536.5 1636.5 1736.5 1836.5

1860.5 1936.5 2036.5 2136.5 2334.5

Lambda, Wave Number in Tie-Rod Analysis, I/in.

.504995 .554282 .589398 .622535 .653996

.684011 .712764 .7404 .974576 1.1625

1.32401 1.46786 1.59882 1.71983 1.87147

1.93934 2.04026 2.13641 2.22842 2.31678

2.40189 2.48409 2.56365 2.64081 2.71579

2.73348 2.78875 2.85985 2.92922 3.06194

Skin Bending Moment at Toe, Mtoe, in.-lb/in.

.288823 1.88333 2.4554 2.93106 3.35245

3.73731 4.09503 4.43131 7.10387 9.06279

10.5862 11.7862 12.7255 13.4448 14.1185

14.3305 14.5351 14.5998 14.5356 14.3518

14.056 13.6552 13.1552 12.5611 11.8777

11.7008 11.109 10.2588 9.33037 7.27322

Transverse Shear Force in Skin at Toe, Wtoe, Ib/in.

4.13938e-2 1.06996 1.53571 1.97858 2.41703

2.85761 3.30313 3.75489 8.65248 14.1524

20.126 26.4885 33.1825 40.1669 50.047

54.8888 62.582 70.4739 78.5507 86.8008

95.214 103.781 112.495 121.349 130.335

132.511 139.449 148.685 158.04 176.892

Rotation at End of Tie-rod Model, ThetaTierodDeg, deg.

9.13684e-2-9. 42543e-2 i. 95239e-2 5. 86234e-2 .120798
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.148156 .174078 .198939 .41893 .615842

.801965 .981229 1.15552 1.32595 1.5521

1.65782 1.82012 1.9804 2.13888 2.29573

2.45109 2.60509 2.75783 2.9094 3.05986

3.09582 3.2093 3.35776 3.5053 3.79489

Compat. Check: Tie-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg.

0 -i.07553e-16 6.93889e-18

-3.60822e-16 i.ii022e-16 -4.44089e-16

-i. II022e-16 -9.99201e-16 0

0 -4.44089e-16 -6.66134e-16

0 -4.44089e-16 -4.44089e-16

-8.88178e-16 -4.44089e-16 8.88178e-16

-1.66533e-16 1.52656e-16

5.55112e-17 5.55112e-16

0 -8.88178e-16

0 8.88178e-16

4.44089e-16 0

0 0

In-plane Tens Strain in Critical Ply, STRAINx, micro in.

266.294 497.183 589.63 669.532 742.373

810.459 875.015 936.781 1464.62 1899.61

2277.93 2614.16 2916.47 3190.14 3522.02

3665.57 3872.29 4060.8 4232.53 4388.69

4530.3 4658.23 4773.26 4876.05 4967.21

4987.42 5047.28 5116.73 5176.01 5264.91

In-plane Comp Strain in Critical Ply, $TRAINy, micro in.

-228.712 -252.124 -270.132 -288.141 -306.15

-324.159 -342.168 -360.177 -540.265 -720.353

-900.441 -1080.53 -1260.62 -1440.71 -1684.91

-1800.88 -1980.97 -2161.06 -2341.15 -2521.24

-2701.32 -2881.41 -3061.5 -3241.59 -3421.68

-3464.9 -3601.77 -3781.85 -3961.94 -4318.52

In-plane Tens Stress in Critical Ply, SIGxTOE, ib/sq in.

244.014 535.784 648.647 745.076 832.251

913.198 989.52 1062.19 1671.17 2158.5

2571.58 2929.52 3243.02 3519. 3841.84

3976.74 4164.99 4329.39 4471.81 4593.83

4696.77 4781.81 4849.93 4902.02 4938.88

4945.53 4961.2 4969.61 4964.7 4917.66

Peel Stress at Toe, SIGzTOE, ib/sq in.

77.9546 241.615 303.021 355.08 401.926

445.295 486.102 524.898 849.204 1108.97

1329.98 1522.44 1691.99 1842.27 2019.72

2094.57 2199.96 2293.18 2375.2 2446.83

2508.76 2561.58 2605.81 2641.89 2670.24

2675.93 2691.21 2705.13 2712.29 2707.55

Shear Lag Stress at Toe, TAUxzTOE, ib/sq in.

166.761 183.831 196.962 210.092 223.223

236.354 249.485 262.616 393.923 525.231

656.539 787.847 919.155 1050.46 1228.52

1313.08 1444.39 1575.69 1707. 1838.31

1969.62 2100.92 2232.23 2363.54 2494.85

2526.36 2626.16 2757.46 2888.77 3148.76

Maximum PrinCipal Tensile Stress Under Toe, SIGmptTOE, ib/sq in.

347.272 624.13 737.862 836.719 927.127

1011.81 1092.21 1169.22 1829.47 2376.19

2854.35 3282.24 3670.12 4024.63 4460.25
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4651.14
5855.82

6580.26

4929.35
6047.87

6687.13

5187.27
6226.24

6818.24

5426.7
6391.76

6939.04

5649.13

6545.17
7149.65
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